Editorial Committee
Chairman : Go SAKAI

Kaoru OHE
Takanori HARADA
Yasuhiro BONKOBARA
Akihiro KAMEYAMA
Kazuhisa SHIIYA
Makoto SAKAMOTO
Yukie MAEDA

These memoirs are issued periodically (One volume a year).
All communications are to be addressed to the chairman of the committee, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan.
(Tel. 0985-58-2872)
Original Articles
Masahide YASUDA, Hidefumi TAKASHIMA, Tomoko MATSUMOTO
Photocatalytic Hydrogen Production from Water-Soluble Polysaccharides ... 1

Tomoko MATSUMOTO, Kento SUGANO, Jin MATSUMOTO, Yoshiyuki FUEDA, Masahide YASUDA
Evaluation of UV-Stability of Coumarins-Loaded Porphyrin-Type Humidity Indicator .. 7

Yutak DOTE, Daiki UESUGI, Tomoo SEKITO
Influence of pH on Lead Removal Ability of Blast Furnace Slag ... 13

Yutak DOTE, Takao NAKAMURA, Tomoo SEKITO
Influence of pH on Zinc Removal Ability of Blast Furnace Slag ... 19

Yutak DOTE, Mika ODA, Tomoo SEKITO
Influence of Simultaneously Recovering Ammonium, Phosphorous and Potassium by Crystallization from Swine Wastewater on Biological Treatment ... 25

Muhammad Afnan HABIBI, Ichijo HODAKA
Different Frequencies between Power and Efficiency in Wireless Power Transfer ... 31

Hiroki TAMURA, Shogo SHIMOMIYAZONO, Kazuya ARIMA, Fumiya KAWAHARA
A Study on the Influence of Lumbar Support on Walking Motion and Standing Time on One Leg with Eyes Closed ... 35

Fumiya KAWAHARA, Hiroki TAMURA, Koichi TANNO
Kurumi TSURUTA, Tomoko SHIOMITSU, Etsuo CHOSA
A Study on the Locomo Age Calculation Method using the Winner Node and the Locomotive Syndrome Estimating Method ... 39

Hiroki NAKAGAWA, Yoshinori NAGASE, Shigeki TOMOMATSU, Masatoshi KIMURA
Study of Convective Heat Transfer on the Combustion Chamber Wall Surface of a Gasoline Engine (Investigation of Negligible Mainstream in a Combustion Chamber) .. 47

Tomohiro USUYAMA, Tadashi OKABE, Takayuki HAMAHATA, Naofumi IKEDA, Hayato KATO
Development of Vibratory Mixer Using Magnetically Levitated Fin Excited by Electromagnetic Force ... 53

W. GANG, B. SHIN
Experimental and Numerical Investigation on Surface Vortices Behavior with Flow Rates in Water Pump Sump ... 59
S. CHUNG, B. SHIN
 Numerical Analysis of Mixed Fluid Jet Flows through Cutting Fluid Supplying Nozzle ... 65

Yasuhiro BONKOBARA, Takahiro KONDOU, Yuya HANAUCHI, Takayuki HAMAHATA
 A Ranking Approach to Estimating Structural Damages ... 77

Hideaki TAKEDA, Tsubasa NAKAMURA, Jianan LU
 Synthesis and Luminescent Properties in Sr Defect and Oxide doped SrAl2O4: Eu Phosphors 105

Goushi NAKAGAWA, Kouji MAEDA, Hidetoshi SUZUKI, Kentaro SAKAI
 Growth Temperature Dependence of Optical Properties in GaAs Nanowires Grown by Pulsed-jet Gas Epitaxy 109

Hideaki HASHIMOTO, Toshiki WADA, Yuki YOKOYAMA, Kouji MAEDA, Hidetoshi SUZUKI
 Effects in Growth Conditions on Crystallinity of GaAsN Films Grown by Atomic Layer Epitaxy using Raman Spectroscopy 113

Yuta MATSUNAGA, Kazuki NIHARA, Shin KAMITAKI, Atsushi YOKOTANI
 Basic Research for Fabrication of Ultra-thin Films on Si(111)-7x7 Clean Surface 117

Himeka TOMINAGA, Kenji YOSHINO
 Thickness Dependence of the Platinum Electrode in Dye-Sensitized Solar Cells 127
Masatoshi ASAKURA, Keisyu KISHIMOTO, Takuma MIYAKE, Tatsuya SAKODA, Yusuke IKI, Kensaku MAEDA
Development of Diagnostic Technique of Insulation Deterioration for Vacuum Circuit Breaker by Partial Discharge Detection .. 133

Yugo SHIRAHAMA, Toshiki HIRASHIMA, Tomoya NAKAMURA, Tatsuya SAKODA
Detection of Partial Discharges in Electric Power Distribution Equipment using an Electromagnetic Wave Sensor ... 139

Toshiki HIRASHIMA, Tomoya NAKAMURA, Yugo SHIRAHAMA, Tatsuya SAKODA
Degradation Characterization of Partial Discharge Occurring in Void ... 143

Tomoya NAKAMURA, Yugo SHIRAHAMA, Toshiki HIRASHIMA, Tatsuya SAKODA
Characterization of Acoustic Emission Signal from a Rubber Sheet during a Tracking Deterioration Test .. 149

Hibiki HORIE, Tatsuya SAKODA, Katsutaka KUBO, Manabu MIZUTANI, Takato FUKANO
Study on Improvement of V-t Characteristic of ZnO Surge Arrester with a Series Gap 155

Tatsuya DEGUCHI, Tatsuya SAKODA, Yoshiaki AKA, Tomikazu ANJIKI, Takato FUKANO
Withstand Voltage Characteristics of Polymeric Material with AC Voltage Application 159

Hiroki GOTO, Taiga DOZONO, Tatsuya SAKODA
Characterization of a Under Water Plasma with Surfactant .. 165

Taiga DOZONO, Hiroki GOTO, Tatsuya Sakoda
Study on Inactivation Process of Bacillus subtilis by an Underwater Plasma Source with a Porous Membrane ... 169

Takeshi NISHIMURA, Taiga DOZONO, Hiroki GOTO, Masaru TOMINAGA, Tatsuya SAKODA
Sterilization of Bacillus Atrophaeus and Escherichia Coli using a Plasma Mist Source for Preventing Diseases of Mango ... 175

Toshitsugu ISHIKAWA, Ippei HUJISAWA, Tatsuya SAKODA, Noriyuki HAYASHI
Relationship between Absolute Humidity of Outside Air and System Operation Mode in Desiccant Air Conditioning System ... 179

Tomoko ISHITSU, Noriyuki HAYASHI, Htin Kyaw Oo
Design of Thermoelectric Power Generation System Using Solar Thermal Energy 185

Daiki HIEJIMA, Takahiro KAI, Thin Thin Hlaing, Noriyuki HAYASHI
Study on Voltage Fluctuation due to Ferranti Effect and Reverse Power Flow in High Voltage Distribution Line ... 191

Yuki FUJIHARA, Shouhei KITA, Noriyuki HAYASHI, Hiroo TARAO
Influence of BMI and Arm Condition on the Internal Human Body Impedance 197
Yuya NAGAKAWA, Mitsuhiro YOKOTA
Numerical Examination on Radio Wave Propagation Loss by Human Body in Two-Dimensional Room Model .. 203

Shota SAKAKIBARA, Mitsuhiro YOKOTA
Numerical Examination of Radio Wave Shadowing Properties for Three-Dimensional Modeling of Human Body ... 209

Tatsuaki MITSUI, Soe Soe Khaing, Mitsuhiro YOKOTA
Scattering Problem of EM Wave by Cylindrical Object Using Multigrid-Moment Method ... 217

Moe Zet Pwint, Mie Mie Tin, Mitsuhiro YOKOTA, Thi Thi Zin
Trademark Image Retrieval using Angular Radial Histogram Approach on Object Region .. 221

Swe Nwe Nwe Htun, Khin Mo Mo Tun, Mitsuhiro YOKOTA, Thi Thi Zin
A Hybrid Information Ranking System for Web Image Search ... 227

Fadila Norasarin ERITHA, Koichi TANNO
Design of Low 1/f Noise Folded Cascode Operational Amplifier by Using Chopper Stabilization Technique .. 233

Hiroaki TACHIBANA, Yuki ARIKAWA, Shotaro USUZAKI, Shin-Ichiro KUBOTA, Kayoko TAKATSUKA, Hisaaki YAMABA, Naonobu OKAZAKI
Discriminating Legitimate Accesses from a Web Access Log Recorded During DDoS Attack .. 239

Yuki ARIKAWA, Shin-Ichiro KUBOTA, Hisaaki YAMABA, Naonobu OKAZAKI
A Proposal of a Mitigation Method of HTTP Flood Attacks Using a Server for Detailed Examination of Pseudo Positive Accesses .. 247

Tokiyoshi KUROGI, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Tetsuro KATAYAMA, Naonobu OKAZAKI
Evaluation of Feature Values of Surface Electromyograms for User Authentication on Mobile Devices .. 251

Ryohei TATSUDA, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Naonobu OKAZAKI
A Study on the CAPTCHA Using Mouse Tracking .. 257

Koki HINOKUMA, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Naonobu OKAZAKI
Proposal of Puzzle Authentication Method with Video Recording Attack Resistance .. 263

Hiroki TACHIYAMA, Tetsuro KATAYAMA
Current Status and Issues of Test Cases Automatic Generation Tool BWDM .. 269

Satoshi TANOUE, Tetsuro KATAYAMA
Current Status and Issues of Refactoring Support Tool MCC Focusing on the Naming of Variables ... 275

Takuya SATO, Tetsuro KATAYAMA
Improvement of TFVIS(Transitions and Flow Visualization) for Applying Java Programs Including Exception Handling .. 279
Hnin Thandar Tun, Tetsuro KATAYAMA, Kunihito YAMAMORI, Khine Khine Oo
Improving Software Development in Business Operation
Effectively Approached by CMMI ... 285

Makoto SAKAMOTO, Akane IDO
The Experiment of Program for Designing of the Hula Dresses Adding Accessories........... 291

Makoto SAKAMOTO, Yuichiro ISHIZAKI, Atsushi IIBOSHI
Description of the Character by the Inbetweening Algorithm for Animation 295

Kunihito YAMAMORI, Seiya INO, Masaru AIKAWA
Three-Step Recognition Method for Handwritten Digits Using SVM and Neural Network...... 299

Kunihito YAMAMORI, Sou OTSUKA, Masaru AIKAWA
Evaluation of Japanese Professional Baseball Hitter by Improved OERA Model Considering with Sacrifice Hit and Fly .. 303

Kunihito YAMAMORI, Yasuhisa NAGANO, Masaru AIKAWA
Generalization Ability Improvement by Parallel Convolution and Dropout 309

Kunihito YAMAMORI, Masaya YOSHIDA, Masaru AIKAWA
Learning Efficiency Improvement of Reinforcement Learning in Restricted View Environment ... 313

Kunihito YAMAMORI, Yusuke ZUSHI, Masaru AIKAWA
Evaluation of Heterogeneous Crossover Island Model by TSP ... 317

Khaing Zin Htwe, Kunihito YAMAMORI, Tetsuro KATAYAMA, Tin Mar Kyi
Early Detection of Lung Cancer by Artificial Neural Network and Fuzzy Inference System 321
目次

研究報告論文
保田昌秀：水溶性多糖類からの光触媒水素生産…………………………………………………………1
高島秀迪：クマリン類を含浸させたポルフィリン型湿度検出剤の耐光性評価…………………………7
松本朋子：高炉スラグの鉛除去能に与えるpHの影響 …………………………………………………13
菅野健人：高炉スラグの亜鉛除去能に与えるpHの影響 …………………………………………………19
小田宮歌：晶析法による養豚廃水中の窒素、リン、カリウム同時回収の生物処理への影響……25
Muhammad Afnan HABIBI：Different Frequencies between Power and Efficiency in Wireless
Ichijo HODAKA：Power Transfer ………………………………………………………………………31

田村宏樹：腰用バンドが歩行動作及び閉眼片足立ち時間に与える影響に関する研究………………35
下宮園翔吾：勝利素子を用いたロコモ年齢算出方法及び
有馬和也：ロコモティブシンドロームの推定方法に関する研究……………………………………39
川原文哉：火花点火機関燃焼室における熱伝達率算出式の検討
鵜田来美：（燃焼室内主流が無視できる場合）………………………………………………………47
塩積智子：電磁力加振方式を採用した磁気浮上型攪拌翼を有する振動型ミキサーの開発………53
臼山智洋：電磁力加振方式を採用した磁気浮上型攪拌翼を有する振動型ミキサーの開発………53
仲川豪志：原料ガス断続供給法を用いて異なる成長温度で作製したGaAsナノワイヤの発光特性………………………………………………………………………………………………… 109
前田幸治：原子層エピタキシー法によって作製されたGaAs薄膜の作製条件の違いが結晶性に与える影響のラマン分光法による評価……… 113
鈴木秀俊：Basic Research for Fabrication of Ultra-thin Films on Si(111)-7x7 Clean Surface ……………………………………………………………………………………………………… 117
境健太郎：Yuta MATSUNAGA

前田幸治：スピンコート法によるZnMgO膜の作製……
出口竜也：交流課電によるポリマー材料の耐電圧特性評価
迫田達也
阿嘉良昌
安食富和
深野孝人

後藤弘輝
堂園大雅
迫田達也

堂園大雅：多孔質膜利用の水中プラズマ源による芽胞菌の不活化過程の検討
迫田達也

西村豪志：マンゴーに発生する病害の防除を目指したプラズマミスト装置における
堂園大雅：芽胞菌及び大腸菌の殺菌
後藤弘輝

石川敏嗣：デシカント空調システムにおける外気の絶対湿度と
藤澤一平：システム運転方式との関係
迫田達也

Tomoko ISHTSU：Design of Thermoelectric Power Generation System
Noriyuki HAYASHI：Using Solar Thermal Energy

Htin Kyaw Oo

比江島大輝：高圧配電線路におけるフェランチ効果と逆潮流による電圧変動に関する研究
甲斐貴大

Thin Thin Hlaing

藤原悠貴：人体内部インピーダンスに及ぼす被験者のBMI及び腕の屈伸の影響
北尚平

太良尾浩生

長川裕耶：2次元部屋に存在する人体モデルによる電波遮蔽損失の数値的検討
横田光広

柴田昌太：3次元人体モデルによる電波遮蔽特性の数値的検討
横田光広

Tatsuaki MITSUI：Scattering Problem of EM Wave by Cylindrical Object Using
Soe Soe khiaing：Multigrid-Moment Method
Mitsuhiro YOKOTA
Moe Zet Pwint : Trademark Image Retrieval using Angular Radial Histogram
Mie Mie Tin : Approach on Object Region .. 221
Mitsuhiro YOKOTA
Thi Thi Zin

Swe Nwe Nwe Htun : A Hybrid Information Ranking System for Web Image Search 227
Khin Mo Mo Tun
Mitsuhiro YOKOTA
Thi Thi Zin

Fadila Norasarir ERITHA : Design of Low f/Noise Folded Cascode Operational Amplifier by Using Chopper Stabilization Technique ... 233

橘 弘 智 : DDoS攻撃ログデータ解析による人と攻撃通信判別に関する研究 239
有川 祐 樹
片 崎 翔太郎
久保田 真一郎
高 塚 佳代子
山 場 久 昭
岡 崎 直 宣

有川 佑 樹 : 擬陽性排除サーバを用いたHTTPフラッド攻撃緩和手法の提案 247
久保田 真一郎
山 場 久 昭
岡 崎 直 宣

黒木 聡 航 : 筋電位による個人認証システム実現のための筋電波形の特徴量に関する検討 251
山 場 久 昭
久保田 真一郎
片 山 徹 郎
岡 崎 直 宣

立田 怜 平 : マウストラッキングを用いたCAPTCHA方式の検討 .. 257
山 場 久 昭
久保田 真一郎
岡 崎 直 宣

日隈 光 基 : 録画画像を用いた攻撃に耐性を持つパズル型認証方式の提案 263
山 場 久 昭
久保田 真一郎
岡 崎 直 宣

立山 博 基 : テストケース自动生成ツールBWDMの現状と課題 .. 269
片 山 徹 郎

田 上 論 : 変数名に着目したリファクタリング支援ツールMCCの現状と課題 275
片 山 徹 郎

佐藤 拓 弘 : 例外処理を含むJavaプログラムへの適用を目的としたデータ遷移可視化ツールTFVISの拡張 ... 279
Hnin Thandar Tun : Improving Software Development in Business Operation
Tetsuro KATAYAMA Effectively Approached by CMMI 285
Kunihito YAMAMORI
Khine Khine Oo

坂 本 真 人：アクセスサリーを取り入れたフラ衣装作成プログラムの試作 291
井 戸 明 音

坂 本 真 人：アニメーションの中割りアルゴリズムによるキャラクターの描写 295
石 崎 裕一朗
飯 干 淳 志

山 森 一 人：SVMとニューラルネットワークを用いた手書き数字の3段階認識法 299
井 野 誠 也
相 川 勝

山 森 一 人：犠打と犠飛を考慮したOERA改良モデルによる日本プロ野球打者の評価 303
大 塚 蒼
相 川 勝

山 森 一 人：平行平均畳み込み処理とドロップアウトによる
長 野 泰 久 畳み込みニューラルネットワークの汎化能力向上 309
相 川 勝

山 森 一 人：視野制限環境下での追跡問題における強化学習の学習効率向上法 313
吉 田 雅 也
相 川 勝

山 森 一 人：TSPにおける異種交叉型異文化島モデルの求解性能評価 317
図 師 悠 佑
相 川 勝

Khaing Zin Htwe : Early Detection of Lung Cancer by Artificial Neural Network
Kunihito YAMAMORI and Fuzzy Inference System 321
Tetsuro KATAYAMA
Tin Mar Kyi
水溶性多糖類からの光触媒水素生産

保田 昌秀 a) · 高島 秀迪 b) · 松本 朋子 c)

Photocatalytic Hydrogen Production from Water-Soluble Polysaccharides

Masahide YASUDA, Hidefumi TAKASHIMA, Tomoko MATSUMOTO

Abstract

Much attention is paid to biomass reforming from viewpoints of renewable energy alternative petroleum-based fuels. Bio-ethanol production is typical biomass reforming. However, ethanol concentration is usually too low to separate by distillation in low energy cost. On the other hand, gaseous H₂ can be spontaneously isolated from reaction mixtures without separation. Therefore, hydrogen production from biomass is one of the economical approaches to biofuels. On these backgrounds, much attention has been paid to photocatalytic H₂ production over a Pt-loaded TiO₂ (Pt/TiO₂), which is initiated by the charge-separation on TiO₂ under photo-excitation. Electron reduces water to generate H₂ on Pt while hole oxidizes hydroxide to hydroxyl radicals. It is well known that the use of electron-donating sacrificial agents remarkably accelerates the TiO₂-photocatalyzed H₂ production since the hydroxyl radical is consumed by the sacrificial agents. We have applied sacrificial H₂ production over Pt/TiO₂ using sacrificial saccharides derived from lignocelluloses. Here, we performed the photocatalytic reforming over Pt/TiO₂ (100 mg) using β-cyclodextrin and water-soluble starch (41.0 ~ 203 mg) as sacrificial agents in water (150 mL) under UV irradiation by a high-pressure Hg lamp. Total volume of H₂ and CO₂ evolved from β-cyclodextrin was 940 ~ 1144 mL/g, which did not reach 2671 mL/g which was total gas volume when complete decomposition of β-cyclodextrin occurred. In the case of starch, the total volume of H₂ and CO₂ was 1063 ~ 1190 mL/g. On the basis of the gas volume, we estimated the reaction scheme. It was thought that degradation of these polysaccharides was stopped in polymeric intermediate whose composition is Ca(H₁O₁₆₇). The 1,4-linkage with other glucose units disturbed the complete decomposition.

Keywords: Biomass reforming, Pt/TiO₂, Hydrogen production, Sacrificial agent, β-Cyclodextrin, Starch

1. はじめに

1.1 バイオマス燃料

バイオマスからの燃料合成（バイオマスリフィーミング）は、化石燃料に替わる再生可能エネルギーの観点から重要となっている。その代表的プロセスであるバイオエタノール生産は 1)、デンプンやセルロースの熱化発酵で生産されるが、エタノールの濃度は低く、蒸留工程にコストがかかっている問題となっている 2)。一方、バイオマスのガス化プロセスによる水素製造は、分離操作なしに自発的に水素分離ができる利点を有していることから注目されている。セルロースを熱酸反応でガス化するプロセスでは、6当量の水素を発生できるが（1式）、光触媒を活用する方法では12当量の水素に変換できること（2式）。そのために、光触媒技術を活用するガス化プロセスは有望なプロセスである 3)。

1.2 光触媒水素発生

代表的な半導体光触媒である白金担持酸化チタン (Pt/TiO₂) は、(3)式に示すように、直光照射によって電荷分離を起こす。生じた空気電子が白金上で水を還元して水素を発生し、ホール (h⁺) は水酸化イオンを酸化して、ヒドロキシラジカル (HO·) を生成する 4)。

\[
\begin{align*}
\text{TiO}_2 & \xrightarrow{h\nu} e^- + h^+ \\
\text{H}_2 + \text{H}_2\text{O} & \rightarrow 0.5 \text{H}_2 + \text{HO}^- \\
\text{H}^+ + \text{HO}^- & \rightarrow \text{HO}·
\end{align*}
\]

(3)

\[
\text{H}_2\text{O} \xrightarrow{h\nu} \text{6CO} + \text{12H}_2 (2)
\]

\[
\text{H}_2\text{O} \xrightarrow{\text{Photocatalyst}} \text{6CO}_2 + \text{12H}_2 (2)
\]

しかし、HO·ラジカルは酸素への変換反応が速く、水素との逆反応も起こるために、犠牲剤を添加してHO·ラジカルの消費を促進して、水素発生の効率を上げる方法がある 5)。犠牲剤には、アルコールやアミンなどの電子供与体を用いるのが一般的であるが、当研究室では、パ
イオマス由来の糖類を亜鉛酸と用いて光触媒塩素発生するバイオマスソーマーを検討している。いままでに、藻本系リグノセルロース（キシログラム）、イタリアンライグラス、ススキ、イチジク、タケなどの酵素親水化（グロコースおよびキシロース）、クロレラの酵素親水化（アミノ酸）、およびバイオディフェル化合成における酵素（グリセロール）を亜鉛酸とする高効率の塩素生成に成功している。

また、当研究グループでは、すべての炭素が水素原子が置換している亜鉛酸は、HO・ラジカルによる塩素水素を脱水素させることが明らかにしている。塩素水素の条件を満たし、(4)式に示すように、グルコース（CaH2O）はHO・ラジカルによって二酸化塩素とホウ素に完全分解される。HO・ラジカルとグルコース、 HO・ラジカルとグルコース、(5)式が導くことができ、グルコース1モル当たり12モルの塩素と6モルの二酸化塩素を発生する。

つまり、1 g当たり2363 mL（15 ℃）の水素と二酸化塩素の混合ガスを理論的に発生することができる。このように、藻本類は多電子供与体として働く優れた亜鉛酸である。

1.3 研究目的

本研究では、多糖類が水溶性であれば、亜鉛と同様の完全分解挙動を示すかを検証する目的で、水溶性多糖類であるβ-シクロデキストリン（CaH10O5）および可溶性デンプン（HICaH10O5）を亜鉛酸に用いた光触媒塩素生成反応について検討を行った。β-シクロデキストリンおよび可溶性デンプンは、グルコースがα-1,4 結合で重合した多糖類である。

2. 実験

2.1 試薬および分析装置

β-シクロデキストリンおよび可溶性デンプンはナカラインテクス社製を用いた。発生ガスの分析は、TCD検出器およびキャビラリーガラス（SHINCARBON、3 mmΦ × 6 m）を装備したガスクロマトグラフィー（島津 GC-8A）を用いて、カラム温度180 ℃で測定した。質量分析はQ Exactive（サーモフィッシャー、米国）を用いて行った。

2.2 白金担持酸化チタンの調製

白金担持酸化チタン光触媒（Pt/TiO2）は、光触媒法により、次のようにして調製した。高圧水銀灯、発生気体を捕集するメスリング、および磁気振とう器を装備した

<table>
<thead>
<tr>
<th>pH</th>
<th>3</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacrificial agent (mg)</td>
<td>203</td>
<td>162</td>
<td>122</td>
</tr>
<tr>
<td>Irrad. time (h)</td>
<td>121</td>
<td>114</td>
<td>123</td>
</tr>
<tr>
<td>Gas volume (mL)</td>
<td>240</td>
<td>195</td>
<td>114</td>
</tr>
<tr>
<td>Sacrificial agent (mg)</td>
<td>203</td>
<td>162</td>
<td>122</td>
</tr>
<tr>
<td>Irrad. time (h)</td>
<td>148</td>
<td>144</td>
<td>149</td>
</tr>
<tr>
<td>Gas volume (mL)</td>
<td>222</td>
<td>190</td>
<td>158</td>
</tr>
<tr>
<td>Sacrificial agent (mg)</td>
<td>203</td>
<td>162</td>
<td>122</td>
</tr>
<tr>
<td>Irrad. time (h)</td>
<td>148</td>
<td>158</td>
<td>119</td>
</tr>
<tr>
<td>Gas volume (mL)</td>
<td>222</td>
<td>112</td>
<td>132</td>
</tr>
<tr>
<td>Sacrificial agent (mg)</td>
<td>203</td>
<td>162</td>
<td>122</td>
</tr>
<tr>
<td>Irrad. time (h)</td>
<td>159</td>
<td>105</td>
<td>119</td>
</tr>
<tr>
<td>Gas volume (mL)</td>
<td>186</td>
<td>148</td>
<td>124</td>
</tr>
<tr>
<td>Sacrificial agent (mg)</td>
<td>203</td>
<td>162</td>
<td>122</td>
</tr>
<tr>
<td>Irrad. time (h)</td>
<td>159</td>
<td>105</td>
<td>119</td>
</tr>
<tr>
<td>Gas volume (mL)</td>
<td>236</td>
<td>174</td>
<td>172</td>
</tr>
</tbody>
</table>
水溶性多糖類からの光触媒水素生産

反応容器（Fig. 1）に2-プロパノール水溶液（0.1 M、400 mL）、酸化チタン（4.0 g、ST01 石原産業）、塩酸白金酸カリウム水和塩（200 mg）を入れ、高圧水銀灯を挿入して、密閉した。反応容器に20分間窒素ガスをパブリックして脱気をした後、激しく振拌しながら、24時間紫外光照射を行った。反応後、減圧蒸留によって反応溶液から溶媒を留去した。得られた黄色固体は蒸留水で洗浄して乾燥させ、Pt担持量2wt%のPt/TiO₂触媒を得た。

2.3 光触媒水素生成

反応容器（Fig. 1）にPt/TiO₂（100 mg）、蒸留水（150 mL）、β-シクロデキストリンまたは可溶性デンプン（41.0～203 mg）を入った。希塩酸および水酸化ナトリウム水溶液で所定のpHに調製した後、20分間窒素バブリックした。反応容器を密閉し、冷却水の温度を15℃に設定して、高圧水銀灯を用いて紫外光照射を行った。発生した気体は水中置換によってメススリンダで採取し、発生ガス量を測定した。気体発生量が増えなくなったところで反応を終了とした。照射時間および気体発生量をTable 1に示す。

3. 結果と考察

3.1 多糖類からの光触媒水素生産

光触媒水素生成は、溶液のpHを3.0、7.0、および10.0に調製したβ-シクロデキストリン水溶液を検量剤に用いて行った。検量剤1g当りの気体発生量を求めるために、Fig. 2に、用いたβ-シクロデキストリン重量に対する気体発生量のプロットを示す。また、比較のために単糖のグルコース（45.225 mg）を検量剤に用いた結果もFig. 2に示す。検量剤の増加とともに、気体発生量が増加し、直線にプロットされている。プロットの傾きから検量剤1g当りの気体発生量を求める。結果をTable 2に示す。β-シクロデキストリンの各pHでの傾きには大きな差異はなく、気体発生量は、940～1144 mL/g になった。

Fig. 1 An apparatus for sacrificial H₂ production over Pt/TiO₂ under UV-irradiation.

Fig. 2 Plots of gas volume vs. the amount of β-cyclodextrin (41–203 mg) at pH 3.0 (▲), 7.0 (○) and 10.0 (●) and glucose (45–225 mg) at pH 7.0 (□) in the photocatalytic H₂ production over the Pt/TiO₂ (100 mg) in water (150 mL) under UV-irradiation.

Fig. 3 Plots of gas volume vs. the amount of water-soluble starch (41–203 mg) at 3.0 (▲), 7.0 (○) and 10.0 (●) of pH in the photocatalytic H₂ production over the Pt/TiO₂ (100 mg) in water (150 mL) under UV-irradiation.
Table 2 Gas volume evolved from photocatalytic reaction over Pt/TiO₂ using β-cyclodextrin, water-soluble starch, and glucose as sacrificial agents.

<table>
<thead>
<tr>
<th>Polysaccharide</th>
<th>pH</th>
<th>Gas volume (mL/g)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Cyclodextrin</td>
<td>3</td>
<td>1144</td>
<td>43.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1043</td>
<td>39.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>940</td>
<td>35.8</td>
</tr>
<tr>
<td>Water-soluble</td>
<td>3</td>
<td>1190</td>
<td>45.3</td>
</tr>
<tr>
<td>Starch</td>
<td>7</td>
<td>1063</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1183</td>
<td>45.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>7</td>
<td>2113</td>
<td>89.4</td>
</tr>
</tbody>
</table>

全分解時の理論気体発生量である2626 mL/gには届かず、収率は35.8%～43.6%となった。

可溶性デンプンについては、β-シクロデキストリンと同様の方法で光触媒生成反応を検討した。実験結果を Fig. 3 に示す。気体発生量は1063～1190 mL/g（収率40.5～45.3%）になった。このことにより、β-シクロデキストリンおよび可溶性デンプンの多糖類からの光触媒水素生成反応では、ガス発生量は理論値に比べて低いものとなった。一方、グルコースを添加剤に用いた場合（Fig. 2）では、ガス発生量は理論値の2363 mL/gに近い2113 mL/gのガスが発生している。

次に、発生した混合気体のH₂とCO₂のモル比率をガスクロマトグラフィーで分析した結果、H₂: CO₂は、β-シクロデキストリンで3.86:1、可溶性デンプンでは3.55:1になった。また、光触媒反応後の反応液から光触媒を除く成分の分析を行ったが、明確なピークは得られなかった。

3.2 反応機構
反応後の溶液の質量分析で明確なピークが見られなかったことから、分解物は高分子量の化合物として残っていると考えられる。そこで、実験で得られた気体発生量とH₂とCO₂の比を考慮して、多糖類の分解反応式として、(7)式を推定した。実験で得られた1167 mL/g（15 ℃）になり、実験で得られた940～1144 mL/gおよび1063～1190 mL/gに近い値となっている。また、H₂とCO₂のモル比率も3:1になり、実験値のモル比率に近い値となっている。

\[
(C_6H_{10}O_5)_n + 3nH_2O \rightarrow (C_4H_4O_4)_n + 2nCO_2 - 6nH_2 \quad (7)\n\]

1.0 g

1167 mL

多糖類から最終生成物（C₄H₄O₄)nを与える可能な分解経路を Scheme 1 に示す。今までの検討において、HO・ラジカルによるグルコースからの水素引き抜きは2 位の炭素で最初に起こることを明らかにしている 1)。そこで、

Scheme 1 Possible mechanism for the decomposition of polysaccharides.

多糖類でも、最初に2 位の水素がHO・ラジカルによって引き抜かれ、HO・ラジカルが付加することで、中間体(I)が生成すると思われる。1 位のグリコシル結合の酸分解が起こりにくいと予想され、中間体(I)の2 位の水酸素基と1 位のプロトンの間および3 位の水酸素基と4 位のプロトンの間で脱水反応が起こってジェン中間体(II)が生成するとと思われる。次に、5 位の水酸素化によって、中間体(II)を経て開環体(VI)に変化したと思われる。側鎖の6 位の水素の引き抜きおよび脱炭酸を経て中間体(V)が生成し、ケトーエノール互変異性によって最終生成物(VI)が生成したと思われる。VI は引き抜かれやすい水素を持たないことから、HO・ラジカルによる分解反応がVIで停止したと思われる。

4. 結論
廃デンプンは、クエン酸製造工場などの食品関連企業で廃棄されている。光触媒水素生成反応で廃デンプン処理に有効だと言われるが、今回の実験で、多糖類はたとえ水溶性であっても、多糖構造を保持したままでは完全分解しないことが明らかになった。そのために廃デンプンからの水素生成には、酵素酸化などの前処理と組み合わせる必要があることが明らかになった。

参考文献
2) P. Alvira, E. Tomás-Pejo, M. Ballesteros, and M. J. Negro: “Pretreatment technologies for an efficient

クマリン類を含浸させたポルフィリン型湿度検出剤の耐光性評価

松本 朋子 a)・菅野 健人 b)・松本 仁 c)・笛田 佳之 d)・保田 昌秀 e)

Evaluation of UV-Stability of Coumarins-Loaded Porphyrin-Type Humidity Indicator

Tomoko MATSUMOTO, Kento SUGANO, Jin MATSUMOTO, Yoshiyuki FUEDA, Masahide YASUDA

Abstract

Cobalt-free humidity detection indicator (HDI) for silica gel was developed using tetraphenylporphyrin (Tpp) which showed distinguishable color change depending on pH. The HDI was prepared by the mixing of dichloro(tetraphenylporphyrinato)phosphorus chloride (PTpp) and MgCl2 with SiO2 beads and the drying at 130 °C for 24 h. During the preparation, the PTpp was decomposed into the protonated Tpp (H2Tpp2+). The pH change arose from a proton release by the reaction of MgCl2 with silanol of the SiO2 under dry conditions and neutralization under humid conditions. The HDI showed green color due to H2Tpp2+ under dry conditions and orange color due to Tpp under humid conditions. However, the HDI took place partial decoloration on extended exposure to sunlight. Here, in order to prevent this decoloration of the HDI by sun light, UV-absorbents such as 7-methoxycoumarin (1a) and 6-methylcoumarin (1b) were loaded to the HDI. The HDIs with and without 1 were irradiated at 352 nm by black light under dry conditions. The irradiated HDI beads were analyzed by microscopic absorption spectra on a confocal laser scanning microscope. The absorbance (A) at 650 nm of the HDI was monitored. The light-protecting ability of UV-absorbent was evaluated by the slope (%R) for time-conversion plots of absorbance ratio (A/A0), where A0 denotes absorbance before irradiation. Since the %R values were minimum values at the loading of 0.100 wt% of 1a and 0.075 wt% of 1b, these were determined to be the optimized concentrations. Thus the loading of 1 was effective to prevent the color degradation.

Keywords: Humidity Indicator, Porphyrin, Coumarin, UV-Stability, Decoloration ratio

1. はじめに

1.1 湿度検出剤

シリカゲルは二酸化ケイ素（SiO2）を主成分とする無定形の多孔質材料であり、広い表面積と強い吸着力を持ち、触媒担体、クロマトグラフィー担体、吸着材、乾燥剤などとして広く利用されている。なかでも、乾燥用シリカゲルは、湿度管理を必要とする半導体や電子部品などの搬送に多用される。シリカゲルの吸湿能は、湿度によって色調変化する湿度検出剤（HDI, Humidity detection indicator）を用いて管理されている。最近までHDIとして塩化コバルトを含浸したシリカゲル（通称青ゲル）が最も一般的に用いられてきた。しかし、市販の青ゲル代替品の多くは、色調変化が分かりづらいことや色素が水分で溶出するなどの問題を含んでいる。我々は、青ゲルに代わるコバルトフリーHDIとして、HDIによって顕著な色調変化を示すポルフィリン発色団（Fig. 1）に注目して、富士シリシア化学と共同で、ポルフィリン型HDIを開発している。
1.2 ポルフィリン型湿度検出剤

ポルフィリン型 HDI5)は、ジクロロテトラフェニルポルフィリナトリン塩化物錯体 (PTpp)、MgCl2 をシリカゲルに含浸させ、加熱乾燥することで調製される (Fig. 2)。

シリカゲルのシラノール基 (Si-OH) は、加熱下で MgCl2 と反応して酸を発生させる6)。同時に PTpp は加熱と酸の存在によって中心金属のリンを脱離し (Fig. 2)，テトラフェニルポルフィリンプロトン付加体 (H2Tpp2+) が生じ、緑色を呈する。

一方、吸湿時には SiO2 内のプロトン濃度が減少し、H2Tpp2+ は脱プロトンしてテトラフェニルポルフィリン (Tpp) を生成してオレンジ色を呈する。このような、ポルフィリン型 HDI は乾燥状態では緑色、湿潤状態ではオレンジ色の色調変化を示す。湿潤状態の HDI を乾燥することによって緑色の HDI を再び形成する可逆応答性も示す。

研究目的

ポルフィリン型 HDI は、太陽光下で長時間使用すると、退色する問題があった。そこで、我々は HDI の耐光性について検討している。既にクマリン (1c) およびジベンゾスベレノンなどの紫外線吸収剤を HDI に含浸させることで、耐光化に成功している7)。また、HDI の退色は H2Tpp2+ の 348 nm での UV 吸収に起因していることを示してい る。そこで、本研究では、さらに低濃度で耐光性を示す紫外線吸収剤を選択し、Fig. 3 に掲げる置換クマリン類、7-メトキシクマリン (1a) および 6-メチルクマリン (1b) を選定して、1a および 1b を含浸させた HDI を調製し、その耐光性を評価したので報告する。

2. 実験

2.1 湿度検出剤 (HDI) の調製

HDI の調製用のシリカゲルとしては、顕微分光で吸収スペクトルを測定するために、粒径が 2.80 ～ 3.35 mm で透明な富士シリカ化学 AB 型を用いた。PTpp は既報7) に従って合成した。また、MgCl2・6H2O、クマリン誘導体は市販品を用いた。HDI の調製手順を次に示す。

1. PTpp 溶液の調製：PTpp (10.0 mg) を 2-プロパノール (200 mL) に溶かして PTpp 溶液を調製した。
2. MgCl2 溶液の調製：塩化マグネシウム六水和物 (MgCl2・6H2O) 9.666 g をメタノール (50 mL) に溶解させて MgCl2 溶液を調製した。
3. 1 の溶液の調製：1 を 2.5, 5.0, 7.5, 10.0, 12.5 mg をそれぞれメタノール (30 mL) に溶解した。
4. HDI の調製

1) よく乾燥させたシリカゲルビーズ (10.0 g) をナスフラスコに入れ、PTpp 溶液 (10 mL)、MgCl2 溶液 (2 mL)、および 1 の溶液 (30 mL) の順に加えて混合した。
2) 1 時間放置後、ロータリーエバポレーターにて溶媒留去し、次に 130 °C に設定した電気炉で 24 時間加熱乾燥させて、1 を 0.025 ～ 0.125 wt% の濃度で含浸した HDI ビーズを調製した。

2.2 退色促進試験と吸光光度分析

退色促進試験は、HDI を石英セル (35×10×8 mm) に密封し (Fig. 4)，室温でセルの 9.0 cm 上部からブラックライト (Hitachi FL8BL-B, 8.0 W, 発光波長 306–412 nm, 発光極大 350 nm) を用いて紫外線を 1 ～ 5 h 照射して行った。

HDI ビーズ中のポルフィリン発色団の吸収スペクトル測定は、オリオン社 FV-300 共焦点レーザー走査型顕微鏡（CLSM）とそれに付属したセキテクノトロン社の
3. 結果および考察

3.1 紫外線吸収剤の吸収スペクトル

溶液中のテトラフェニルポルフィリン（Tpp）、テトラフェニルポルフィリンプロトン付加体（H₂Tpp²⁺）、1a、1b および非置換クマリン（1e）の紫外吸収スペクトルを測定した。Fig. 5（上段）の a, b では、それぞれ Tpp のアセトニトリル溶液（2.0×10⁻⁴ M）、Tpp のアセトニトリル溶液に過塩素酸（6×10⁻³ M）を添加して生成させた H₂Tpp²⁺ 溶液（3.0×10⁻³ M）を示す。また、c, d, e には 1a のメタノール溶液（3.0×10⁻³ M）、1b のメタノール溶液（2.0×10⁻⁴ M）および 1c のメタノール溶液（8.0×10⁻⁴ M）の吸収スペクトルを示す。

Tpp（a）は、410 nm付近の Soret 帯以外に紫外線領域に反射吸収を示さないが、H₂Tpp²⁺（b）は、348 nmに吸収極大波長を持った幅広い吸収帯を紫外線領域に持っている。一方、1a（c）、1b（d）および 1c（e）は、それぞれ紫外線領域の360 nm、358 nm、および345 nmに長波長吸収を示し、吸収帯を示した。Fig. 5（下段）には、発光極大（Hitachi FL8BL-B）の発光スペクトルを示す。発光極大波長は350 nmにあり、306-412 nmの間に発光を持つことが分かった。

このことから、紫外線による HDI の退色は H₂Tpp²⁺の348 nmでのUV吸収に起因していると思われ、1の添加によって H₂Tpp²⁺のUV吸収が抑制されることが期待される。

3.2 退色促進試験

乾燥状態でのHDIの退色促進試験に対する1の添加効果について検討を行った。Fig. 4のように乾燥したHDIビーズを石英セルに入れて発光した。石英セルをCLSM装置の測定ステージにセットし、石英セル中のHDIビーズ3粒（ビーズ番号1、2、3）を任意に選び、ビーズ毎の吸収スペクトルをCLSMで測定した。Fig. 6に乾燥状態での3つのHDIビーズの吸収スペクトルの例を示す。650 nmにおけるH₂Tpp²⁺による吸収が見られる。

Fig. 6に示すようにHDIビーズの粒径およびH₂Tpp²⁺の吸収帯の違いから吸光度（A）にバラツキが見られた。そこで、未照射時に選んだ3粒のHDIビーズと同じビーズについてUV照射後のAの測定を行った。退色促進試験はブラックライトで306-412 nmのUVを1-5 h照射して行い、照射時間毎に石英セルをCLSMの測定ステージにセットして顕微吸光光度分析を行った。Table 1に、照射時間毎の1の含浸量（0.0〜0.125 wt%）の異なるHDIビーズについて、選んだ3つのビーズのAの値を示す。

Fig. 5（上）: Tpp（a, 2×10⁻⁴ M in MeCN）、H₂Tpp²⁺（b, 3.0×10⁻³ M in MeCN）、1a（c, 1.8×10⁻⁴ M in MeOH）、1b（d, 2.0×10⁻⁴ M in MeOH）および1c（e, 8.0×10⁻⁴ M in MeOH）の吸収スペクトル。（下）: ブラックライト（Hitachi FL8BL-B）の発光スペクトル。

Fig. 6: マイクロ領域吸収スペクトルのレンジである。
退色率 ▲ (吸光度) に比例しているので、各照射時間における退色が抑制されていることが分かる。

Fig. 8 には、含浸させた I の重量濃度に対する%R の依存性を示す。紫外線吸収剤を含浸しない場合の%R 値は 8.57%/h であった。クマリン類を含浸した場合、含浸量の増加とともに%R 値は小さくなり、紫外線吸収剤の含浸によって退色が抑制されていることが分かる。

3.3 耐光効果の評価

退色反応は直線的に起こると仮定して、その評価は、式(1)を用いて行った。ここで、[P]はH₂Tpp²⁺の濃度、[P]₀はUV照射前の濃度を示す。ランバート ベア則で[P]=[A]に比例しているので、各照射時間におけるAの光照射前の吸光度(A₀)に対する比(A/A₀)を3つのピークのそれぞれに対して求めて平均化した。

Fig. 7 には、1b含浸HDIの場合の100×A/A₀の平均値の照射時間(t)に対するプロットの例を示す。用いた1の量によってそれぞれ異なる傾きを持つ直線上にプロットされた。プロットの傾きから退色率%R [%/h]を求める、Table 1に示す。

\[\frac{100[A]}{[P]_0} = \frac{100A}{A_0} = %R \times t \] \hspace{1cm} (1)

Fig. 8 は、含浸させたIの重量濃度に対する%R の依存性を示す。紫外線吸収剤を含浸しない場合の%R 値は 8.57%/h であった。クマリン類を含浸した場合、含浸量の増加とともに%R 値は小さくなり、紫外線吸収剤の含浸によって退色が抑制されていることが分かる。

4. 結論

紫外線吸収剤であるクマリン誘導体を共含浸させることが、HDIの湿度による色調変化に影響を与えることなく、UV退色を抑制することに成功した。また、以降報告した非置換クマリンの場合の最適濃度 0.125 wt% である場合

参考文献

Table 1: Absorbance change under irradiation by black light (λ=306–412 nm).

<table>
<thead>
<tr>
<th>Run No.</th>
<th>UV-absorbent (wt %)</th>
<th>Beads no.</th>
<th>%R (%)</th>
<th>(h<sup>-1</sup>)<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>)</sup></td>
<td>-</td>
<td>1</td>
<td>0.174</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.127</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.143</td>
<td>0.132</td>
</tr>
<tr>
<td>2</td>
<td>1a (0.025)</td>
<td>1</td>
<td>0.112</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.105</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.205</td>
<td>0.172</td>
</tr>
<tr>
<td>3</td>
<td>1a (0.050)</td>
<td>1</td>
<td>0.249</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.253</td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.211</td>
<td>0.207</td>
</tr>
<tr>
<td>4</td>
<td>1a (0.075)</td>
<td>1</td>
<td>0.287</td>
<td>0.295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.191</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.200</td>
<td>0.187</td>
</tr>
<tr>
<td>5</td>
<td>1a (0.100)</td>
<td>1</td>
<td>0.269</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.195</td>
<td>0.196</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.256</td>
<td>0.248</td>
</tr>
<tr>
<td>6</td>
<td>1a (0.125)</td>
<td>1</td>
<td>0.279</td>
<td>0.297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.396</td>
<td>0.413</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.274</td>
<td>0.268</td>
</tr>
<tr>
<td>7</td>
<td>1b (0.025)</td>
<td>1</td>
<td>0.076</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.070</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.134</td>
<td>0.080</td>
</tr>
<tr>
<td>8</td>
<td>1b (0.050)</td>
<td>1</td>
<td>0.206</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.165</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.183</td>
<td>0.173</td>
</tr>
<tr>
<td>9</td>
<td>1b (0.075)</td>
<td>1</td>
<td>0.329</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.283</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.333</td>
<td>0.331</td>
</tr>
<tr>
<td>10</td>
<td>1b (0.100)</td>
<td>1</td>
<td>0.259</td>
<td>0.270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.270</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.234</td>
<td>0.219</td>
</tr>
<tr>
<td>11<sup>)</sup></td>
<td>1c (0.125)</td>
<td>1</td>
<td>0.731</td>
<td>0.711</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.650</td>
<td>0.623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.346</td>
<td>0.392</td>
</tr>
</tbody>
</table>

a) UV-absorbent. The values in parenthesis were concentrations in wt% of UV-absorbent. b) Irradiation time in hour.

The retardation ratio (%R) was determined from the slope for the plots of A/A₀ against irradiation time (t). d) HDI without UV-absorbent. e) Refereed from Ref 7.
高炉スラグの鉛除去能に与えるpHの影響

土手 裕a)・上杉 大樹b)・関戸 知雄c)

Influence of pH on Lead Removal Ability of Blast Furnace Slag

Yutak DOTE, Daiki UESUGI, Tomoo SEKITO

Abstract

The purpose of this research was to evaluate the availability of blast furnace slag as lead adsorbent after disposal site termination using as landfill cover soil. The effect of pH on lead adsorption of the slag and estimation of a mechanism of lead removal were investigated using washed slag and no washed slag. Henry type adsorption isotherm could be applied to lead removal at pH 8-13. A maximum lead distribution coefficient, Kd, was obtained at pH of 11 for no washed slag and pH of 10 for washed slag. Lead removal mechanism was considered as ion exchange but not precipitation of lead with elute from slag. The amount of lead adsorption amount was reduced using eluted solution from fly ash. This result suggested that cation eluted from fly ash would inhibit lead adsorption by slag.

Keywords: Lead, Blast-furnace slag, Adsorption, Landfill, pH dependence

1. はじめに

最終処分場の主な埋立物の1つである焼却飛灰は、鉛等の重金属を多く含んでいる。鉛は、バッテリーや鉛管、顔料など幅広く用いられており、貧血、消化器疾患、末梢神経障害などの人体への悪影響がある有害な重金属である。そのため、飛灰は特別管理一般廃棄物とされており、中間処理を行い埋立処分を満たさなければならない管理型処分場に埋め立てることができない。中間処理では、即効性が高く処理工程が簡単であることなど、多くの自治体で飛灰処理方法としてキレート処理が採用されるが、フロイントリッヒ型の吸着等温式が適用でき、水溶液のpHが影響を与え、鉛吸着の最適pH範囲は4.0-7.0であると報告されているが、pH値がアルカリ側（pH>8）での吸着に関しては検討されていない。また、スラグを使用した飛灰溶出実験を除いて、ごみ溶融スラグを透過性を確保するための材料として用いた事例もあるが、吸着剤として適用した事例は少ない。

本研究では、スラグを中間覆土として用い、処分場廃止後に焼却飛灰から溶出する鉛を埋立覆土の中で吸着させることで、埋立覆土内で鉛を不溶化することが考えられる。一方、高炉スラグは鉄鋼を生産する際に同時に発生する廃棄物である。また高炉スラグの発生量は平成25年で約2500万トンと膨大である。高炉スラグは、鉛の吸着材としての可能性があると考えられている。これまで高炉スラグは副産物として扱われ、現在で路盤材やシート原材に利用されているが、公共土木工事量が減少しているため、新たな利用方法を検討する必要がある。

2. 実験方法

a) 社会環境システム工学科教授
b) 土木環境工学科学部生（現（株）志多組）
c) 社会環境システム工学科准教授
2.1 高炉スラグについて
本研究に用いたスラグは、高炉徐冷スラグを用いた。スラグは、ふるい分けを行い4.75-19mmのものを使用した。このスラグを液固比10の条件で蒸留水を用いて200rpmで3時間振とう後、乾燥機に入れ105℃で3日間乾燥し洗浄スラグとした。比表面積はBET法、陽イオン交換能は土壤環境分析法V.6.Aにより測定した。

2.2 鉛溶解のpH依存性試験
200mLのビーカーにPbCl₂から作成した鉛溶液(100mg-Pb/L)を100mL加え、自動滴定機(Metrohm)を用い所定のpHを6時間保った。設定pHは7-13とし、pHの調整には10mMあるいは1MのNaOH溶液を用いた。反応終了後、pHと滴定量を測定し0.45μmのメンブランフィルターでろ過し分析用試料を採取した。

2.3 スラグによる鉛除去実験
鉛溶解のpH依存性試験の結果をもとに、pH 8、9、10、11、12、13の条件において吸着等温線を求めるため実験を行った。ポリ瓶にスラグ10g、pH調整済み鉛溶液を加え、200rpmで6時間振とうした。設定pHは7-13とし、pHの調整には10mMあるいは1MのNaOH溶液を用いた。反応終了後、pHと滴定量を測定し0.45μmのメンブランフィルターでろ過し分析用試料を採取した。

2.4 スラグ溶出液による溶出実験
2.4.1 スラグ溶出液
スラグから溶解する物質に亜鉛を除去する能力があるかを検討するため、未洗浄及び洗浄スラグを対象に実験を行った。2Lのポリ瓶に蒸留水1.5L、スラグ30gを加え、200rpmで6時間振とうした。振とう後、5Bのろ紙とブファーロートで吸収ろ過を行った。

2.4.2 スラグ溶出液の調整
得られたろ液の400mLに1MのHClを加えてpHを8に調整し、スターラーで摂拌しながら1時間pHを保った。同様にろ液400mLに1MのNaOHを加えてpH12に調整し、スターラーで摂拌しながら1時間pHを保った。pH調整したスラグ溶出液を0.45μmのメンブランフィルターで吸引ろ過した。その後、pHを測定し、分析用に50mLポリ瓶を用いて、5Bのろ紙とブファーロートで吸収ろ過を行った。

2.4.3 鉛除去実験
pH調整済みのスラグ溶出液あるいは蒸留水100mLに対して鉛溶液を1mL加え、200rpmで6時間振とう後pHを測定し、0.45μmのメンブランフィルターでろ過したろ液を分析用試料とした。pH8、12に調整した溶液に添加した鉛濃度はそれぞれ、10、1000mg/Lとした。

2.5 実飛灰溶出液からの除去実験
焼却飛灰はA市の一般廃棄物焼却施設より2014年10月に採取したものを利用した。この飛灰は、消石灰吹込みによる排ガス処理を行った後の飛灰であるが、キレート処理等の安定化処理は行っていない。2Lのポリ瓶に蒸留水を1.5L、飛灰を150g加え、200rpmで6時間振とうした。振とう後、5000gで10分間遠心分離し上澄みを0.45μmのメンブランフィルターで吸引ろ過して飛灰溶出液を得た。ろ液のpHを測定後、分析用試料を採取した。次に、500mLのポリ瓶にスラグ10g、得られた飛灰溶出液500mLを加え、200rpmで6時間振とうした。スラグは、洗浄スラグ、未洗浄スラグの両方で実験を行った。振とう後、pHを測定し、分析用に25、35、50に調整したそのろ液を分析用試料とした。

2.6 分析方法
Na、K、Ca、Mgの測定についてフレーム原子吸光光度計(日立-Z2000)により分析を行った。Pbについては、まず、フレーム原子吸光光度法により分析を行い、低濃度のPbについてはフレームレス原子吸光光度法により分析を行った。マトリックスモディファイアーとして、リン酸二水素アンモニウム1％溶液を用いた。また、島津ソーセンシル状プラズマ誘導発光分析装置(ICP-8100)により、Al、Siの測定を行った。

3. 結果と考察
3.1 スラグの特性
スラグの性状を表-2に示す。スラグを洗浄することで、陽イオン交換能および比表面積は小さくなり、陽イオン交換能は約50%、比表面積では約14%小さくなる。既往の研究7,11-13)で用いられた高炉スラグの比表面積0.3-1.8m²/gと比較すると、本研究で用いた高炉スラグの比表面積は大きかった。

<table>
<thead>
<tr>
<th>pH</th>
<th>体積(L)</th>
<th>鉛溶液濃度(mg-Pb/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.5, 2, 4</td>
<td>0, 0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.5, 2, 4</td>
<td>0, 0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.5, 2, 5</td>
<td>0, 0.05</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>0, 0.5, 0.8, 1.0</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0, 0.5, 1, 5, 10, 11.5, 15, 20</td>
</tr>
<tr>
<td>13</td>
<td>0.5</td>
<td>0, 0.5, 1, 5, 25, 35, 50</td>
</tr>
</tbody>
</table>
3.2 鉛の溶解度曲線

鉛溶解のpH依存性試験の結果を図-1に示す。pHが増加するにつれ鉛濃度は低下し、pH10で最も低く0.11mg/Lとなった。pH10以降は鉛濃度は増加し、pH12,13で約100mg/Lとなった。この結果をもとに、スラグによる鉛除去率に対するpHの影響を検討する場合に、所定pHで鉛の溶解度を超えないように鉛初期濃度を設定した。

3.3 スラグによる鉛除去におけるpHの影響

表-2 スラグ特性。

<table>
<thead>
<tr>
<th></th>
<th>比表面積 (m²/g)</th>
<th>阳イオン交換能 (meq/100g-dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未洗浄</td>
<td>2.62</td>
<td>3.7</td>
</tr>
<tr>
<td>洗浄</td>
<td>2.26</td>
<td>3.5</td>
</tr>
</tbody>
</table>

図-1 鉛の溶解度曲線。

図-2 各pHにおける吸着等温線（○:未洗浄、●:洗浄。図中の直線はHenry型吸着等温線を表す）。

3.4 スラグ溶出液による溶出実験

2.4.1 スラグ溶出液

スラグから溶解する物質に亜鉛を除去する能力があるかを検討するため、未洗浄及び洗浄スラグを対象に実験を行った。2Lのポリ瓶に蒸留水1.5L、スラグ30gを加え、200rpmで6時間振とうした。振とう後、500gで10分間遠心分離し上澄みを0.45μmのメンブランフィルターで吸引ろ過した。

2.4.2 スラグ溶出液の調整

得られたろ液の400mLに1MのHClを加えてpHを8に調整し、スターラーで攪拌しながら1時間pHを保った。同様にろ液400mLに1MのNaOHを加えてpH12に調整し、スターラーで攪拌しながら1時間pHを保った。pH調整したスラグ溶出液を0.45μmのメンブランフィルターで吸引ろ過した。その後、pHを測定し、分析用に50mLポリ瓶に採取し、濃硝酸0.25mLを加えた。比較のために、400mLの蒸留水に1MのNaOHを加えて同様にpHを8,12に調整した溶液も用いた。

2.4.3 鉛除去実験

pH調整済みのスラグ溶出液あるいは蒸留水100mLに対して鉛溶液を1mL加え、200rpmで6時間振とう後pHを測定し、0.45μmのメンブランフィルターでろ過したろ液を分析用試料とした。pH8,12に調整した溶液に添加した鉛濃度はそれぞれ、10,1000mg/Lとした。

2.5 実飛灰溶出液からの除去実験

焼却飛灰はA市の一般廃棄物焼却施設より2014年10月に採取したものを用いた。この飛灰は、消石灰吹込みによる排ガス処理を行った後の飛灰であるが、キレート処理等の安定化処理を行っていない。2Lのポリ瓶に蒸留水1.5L、飛灰150gを加え200rpmで6時間振とうした。振とう後、5000gで10分間遠心分離し上澄みを0.45μmのメンブランフィルターで吸引ろ過して飛灰溶出液を得た。ろ液のpHを測定後、分析用試料を採取した。次に、500mLのポリ瓶にスラグ10g、得られた飛灰溶出液500mLを加え、200rpmで6時間振とうした。スラグは、洗浄スラグ、未洗浄スラグの両方で実験を行った。振とう後、pHを測定した後に0.45μmのメンブランフィルターでろ過し、ろ液を分析試料とした。

2.6 分析方法

Na,
K,
Ca,
Mgの測定についてフレーム原子吸光光度計(日立-Z2000)により分析を行った。Pbについては、まずフレーム原子吸光光度法により分析を行い、低濃度のPbについてはフレームレス原子吸光光度法により分析を行った。マトリックスモディファイアーとして、リン酸二水素アンモニウム1%溶液を用いた。また、島津シーケンシャル形プラズマ誘導発光分析装置(ICP-8100)により、Al,
Siの測定を行った。

3.結果と考察

3.1 スラグの特性

スラグの性状を表-2に示す。スラグを洗浄することで、陽イオン交換能および比表面積は小さくなり、陽イオン交換能は約5%、比表面積では約14%小さくなった。既往の研究7,11-13で用いられた高炉スラグの比表面積0.3-1.8m²/gと比較すると、本研究で用いた高炉スラグの比表面積は大きかった。

表-1 スラグによる鉛除去実験条件。

<table>
<thead>
<tr>
<th>pH</th>
<th>体積 (L)</th>
<th>鉛溶液濃度 (mg-Pb/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.5, 1, 2</td>
<td>0, 0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.5, 1, 2</td>
<td>0, 0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.5, 1, 2</td>
<td>0, 0.05</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>0, 0.5, 0.8, 1.0</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0, 0.5, 1, 5, 11.5, 15, 20</td>
</tr>
<tr>
<td>13</td>
<td>0.5</td>
<td>0, 0.5, 1, 5, 25, 35, 50</td>
</tr>
</tbody>
</table>

3.2 鉛の溶解度曲線

鉛溶解のpH依存性試験の結果を図-1に示す。pHが増加するにつれ鉛濃度は低下し、pH10で最も低く0.11mg/Lとなった。pH10以降は鉛濃度は増加し、pH12,13で約100mg/Lとなった。この結果をもとに、スラグによる鉛除去率に対するpHの影響を検討する場合に、所定pHで鉛の溶解度を超えないように鉛初期濃度を設定した。
K_dは分配係数(L/kg)、C_eは平衡濃度(mg/L)、qは吸着量(mg/kg)である。決定係数R^2を表-3に示す。pH8を除いてR^2は0.8以上を示し、高い相関が得られた。pH8では0.6程度であり相関は他のpH条件よりも低かった。以上から、スラグを用いた鉛吸着の吸着等温線は、ヘンリー型が適用できるといえた。既往の研究では、pH5で鉛吸着等温線がフロイドリッヒ型と高い相関を示しているが7)。今回の実験で、高いpH条条件下ではヘンリー型の吸着等温線と相関が高い結果が得られた。実験条件が違うことで吸着等温線の型も変わったと考えられる。

また、pHとK_dの関係を図3に示す。蒸留水での鉛除去実験で未洗浄スラグでのK_dはpH8で3960(L/kg)でpH11まで増加傾向にあり、pH11で5580(L/kg)となった。pH11以下でK_dは減少し、pH13で10.2(L/kg)となった。洗浄スラグでのK_dは、pH8で929(L/kg)で、pH10まで増加し2290(L/kg)となった。pH10以降は減少していき、pH13で6.6(L/kg)となった。一般の土壌成分である黒ボク土の鉛吸着の分配定数が4150L/kgとの報告があり14)、pHなどの条件が異なるため単純に比較することはできないが、pH11でのスラグのK_d:5580mg/Lが大きいことがわかった。

未洗浄スラグと洗浄スラグのK_dを比較すると、洗浄スラグの方が各pHで小さくなっており、スラグを洗浄することで鉛除去量が低下することがわかった。

pHの依存性に関してDimitrovaらは、pH2-9の範囲でpHが増加するにつれスラグによる鉛除去量が増加すると報告しており7)。今回の実験でpH11程度まで吸着量は増加していき、pH12,13では減少するという結果であった。pH12,13では以下の反応式(2)により、$[\text{Pb(OH)}_n]^{2-n}$等の鉛錯体が形成され、Pb$^{2+}$が減少したためスラグに吸着されなかった可能性が考えられた。

\[
\text{Pb}^{2+} + n\text{OH}^- \leftrightarrow [\text{Pb(OH)}_n]^{2-n} \tag{2}
\]

埋立処分場からの浸出液のpHは、廃止時にはpH7-8程度であるので15)、廃止後に中間覆土にスラグを用いた場合、十分な吸着性能を発揮することが期待できる。

3.4 スラグ溶出液による除去実験結果

スラグ溶出液に鉛溶液を添加した実験結果を図4に示す。図中の想定値とは、溶液に添加した鉛濃度の計算値である。想定値と蒸留水の結果を比較すると、残存鉛濃度にほとんど差がないので、鉛がpHによる溶解度の影響を受けていないといえる。蒸留水とスラグ溶出液の結果を比較すると、残存鉛濃度にほとんど差が無いことから、スラグからの溶出物と鉛による沈殿反応は発生していないと考える。

<table>
<thead>
<tr>
<th>pH</th>
<th>未洗浄</th>
<th>洗浄</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.6420</td>
<td>0.9552</td>
</tr>
<tr>
<td>9</td>
<td>0.9552</td>
<td>0.7941</td>
</tr>
<tr>
<td>10</td>
<td>0.7941</td>
<td>0.8593</td>
</tr>
<tr>
<td>11</td>
<td>0.8593</td>
<td>0.9557</td>
</tr>
<tr>
<td>12</td>
<td>0.9557</td>
<td>0.9944</td>
</tr>
<tr>
<td>13</td>
<td>0.9944</td>
<td>0.9937</td>
</tr>
</tbody>
</table>

表-3 各pHのK_d

![図-3 分配係数k_dに与えるpHの影響](image)

![図-4 スラグ溶出液による鉛除去結果](image)
3.5 実飛灰溶出液からの除去実験

実飛灰にスラグを加えて鉛除去実験を行わない、吸着量と平衡濃度から求めた K_d の関数を示す。3.3 の蒸留水での鉛吸着実験結果と比較すると、飛灰溶出液で利用した場合の K_d の値が 1/10 ほど小さかった。このことから、飛灰溶出液中の物質が鉛吸着を妨害した可能性が考えられた。表4 に実験に用いた飛灰溶出液の分析結果を示すが、陽イオンである Na, K, Ca が 3500mg/L 以上含まれていた。スラグによる鉛吸着が陽イオン交換であるとすると、Dimitrova の報告に基づき、閉鎖後 18 年経過した一般廃棄物処分場の陽イオン濃度は、Na が約 200mg/L, K が約 150mg/L, Ca が約 50mg/L であるので、実際に中間覆土にスラグを用いた場合、吸着量は減少する。しかし、飛灰から溶出した陽イオンが鉛吸着を妨害している可能性が考えられた。

3.6 スラグによる鉛除去メカニズムの推定

本研究により得られた実験結果から、スラグによる鉛除去メカニズムを推定すると、スラグ溶出液による鉛除去効果がないとした。なお、蒸留水による実験結果を示す。4.1 に示した実験結果から、飛灰溶出液に含まれる含鉛以外の陽イオンが鉛の吸着を妨害している可能性が考えられた。カルシウム、プラジウム、マグネシウム、カリウム、ナトリウムイオンが鉛の吸着を妨害するものと考えられた。

4. おわりに

本研究では、処分場廃止後に埋め立ての中間覆土で高炉スラグを用いて、飛灰から溶出す鉛を不溶化することを想定し、pH がスラグによる鉛吸着に与える影響についての実験およびスラグによる鉛除去メカニズムを推定するための実験を施行した。得られた結果は以下の通りである。

1) 蒸留水を用いた場合、pH=13 でスラグによる鉛除去率は 67% であった。なお、pH=12, 13 では以下に示す反応式 (2) により、鉛の除去率が増加する。pH12,

4.6 スラグ溶出液からの除去実験

実飛灰にスラグを加えて鉛除去実験を行ない、吸着量と平衡濃度から求めた K_d の関数を示す。3.3 の蒸留水での鉛吸着実験結果と比較すると、飛灰溶出液で利用した場合の K_d の値が 1/10 ほど小さかった。このことから、飛灰溶出液中の物質が鉛吸着を妨害した可能性が考えられた。表4 に実験に用いた飛灰溶出液の分析結果を示すが、陽イオンである Na, K, Ca が 3500mg/L 以上含まれていた。スラグによる鉛吸着が陽イオン交換であるとすると、Dimitrova の報告に基づき、閉鎖後 18 年経過した一般廃棄物処分場の陽イオン濃度は、Na が約 200mg/L, K が約 150mg/L, Ca が約 50mg/L であるので、実際に中間覆土にスラグを用いた場合、今回実験結果はどの吸着量の減少はないと考えられるが、鉛除去への陽イオンの影響は今後の検討課題である。

5.6 スラグによる鉛除去メカニズムの推定

本研究により得られた実験結果から、スラグによる鉛除去メカニズムを推定すると、スラグ溶出液による鉛除去効果がないことが考えられた。スラグからの溶出物による鉛の不溶化ではないと考えられた。

5) 実飛灰溶出液からの鉛吸着量が、蒸留水での鉛吸着量より小さく、飛灰から溶出した陽イオンが鉛吸着を妨害している可能性が考えられた。

以上により、鉛除去メカニズムとすることに矛盾しない。

14) 中野晶子、森下智貴、大坪政美、東孝寛、金山素平、粘土ライナー材の鉛吸着・移動特性に塩類が与える影響、農業農村工学会論文集、No. 81, Vol. 6, pp. 47-53, 2013.

高炉スラグの亜鉛除去能に与えるpHの影響

土手 裕 a)・中村 宜央 b)・関戸 知雄 c)

Influence of pH on Zinc Removal Ability of Blast Furnace Slag

Yutak DOTE, Takao NAKAMURA, Tomoo SEKITO

Abstract

The Influence of pH on zinc removal ability of blast furnace slag was investigated to use it for the zinc removal agent in landfill cover soil after its termination. Batch type adsorption experiment was performed using washed and no washed blast furnace slag. The adsorption isotherm of Henry type could be applied at pH 8, 9, 12 and 13. A maximum of distribution coefficient was obtained at pH 9, 1460L/kg for no washed slag and 265 kg/L for washed slag. No compound to remove zinc would dissolve from slag. Cation coexisting with zinc in leachate had little effect on zinc adsorption of slag. It was found that in actual landfill condition with pH of 7-8, the blast furnace slag would adsorb zinc with lower adsorption ability than the maximum appeared at pH9.

Keywords: Zinc, Blast-furnace slag, Adsorption, Landfill, pH dependence

1. はじめに

一般廃棄物の最終処分場の埋立物には焼却飛灰が含まれており、焼却飛灰中には環境に有害である重金属を多く含む b)。飛灰中の重金属において亜鉛は非常に多く含まれており、排水基準が5mg/Lから2mg/L変更され c)などの危険性が見直されている。そのため、中間処理として有機系液体キレート剤を用いたキレート処理が行われている 1)。しかし、金属キレート化合物に酸化反応が起こり、キレート化合物が分解され重金属が再溶出する危険性が指摘されている 1)。一方、鉄鋼スラグは鉄鋼を生産する際に生じる廃棄物であり、高炉スラグと製鋼スラグがある。その中でも、高炉スラグは平成25年度の発生量が2500万トンと膨大である d)。高炉スラグは、主に路盤材、コンクリート用粗骨材やクリンカー原料などに利用されている 5)。また、高炉スラグはZnやPb等の重金属を吸着することが知られている 6)。そのため、重金属を捕捉する中間覆土として利用できる可能性がある。

高炉スラグによる重金属の除去メカニズムとして、イオン交換、吸着、沈殿が知られている 1)。またスラグは陽イオンを吸着するため、Na等の陽イオンが重金属の吸着を妨害すると分かっている 7)。重金属の吸着において、pH3以下の場合はH濃度が高い状況下ではスラグは鉛と亜鉛を吸着しにくいと報告されている 9)。またZnにおいて、pH3とpH6のそれぞれの条件下ではpH6の方が吸着量が高くなると報告されている 9)。高炉スラグを用いたpH4、反応時間3時間の条件下では、ZnとCuにおいて除去率が90%以上であることが報告されている 9)。このように、亜鉛の吸着に関する研究は行われているが、最終処分場の埋立土を想定した高いpH条件下では行われていない。

そこで本研究では、一般廃棄物埋立層内で焼却飛灰から溶出する亜鉛を埋立層内で吸着させるための基礎的知見を得ることを目的として、高炉スラグにおける亜鉛の吸着能を検討した。また、吸着量に対するスラグの洗浄効果、スラグ溶出物の亜鉛除去効果、および実飛灰溶出液を用いた亜鉛除去効果の検討を行った。

2. 実験方法

2.1 高炉スラグについて

本研究に用いたスラグは、高炉徐冷スラグを用いた。スラグは、ふるい分けを行い4.75-19mmのものを使用した。このスラグを液固比10の条件で蒸留水を用いて200rpmで3時間振とう後、乾燥機に入れ105℃で3日間乾燥し洗浄スラグとした。比表面積はBET法、陽イオン交換能は土壌環境分析法V.6.Aにより測定した。

2.2 亜鉛溶解のpH依存性試験

200mLのビーカーにZnCl2から作成した亜鉛溶液（100mg/L-Zn）を100mL加え、自動滴定機(Metrohm)を用い
て所定のpHを6時間保った。設定pHは7-13とし、pHの調整には0.1Mあるいは1MのNaOH溶液を用いた。反応終了後、pHと滴定量を測定し、0.45μmのメンブレンフィルターでろ過し、分析用試料を採取した。

2.3 スラグによる亜鉛除去実験
亜鉛溶解のpH依存性試験の結果をもとに、pH8, 9, 12, 13の条件において吸着等温線を求めるための実験を行った。ポリ瓶にスラグ10g、pH調整済み亜鉛溶液を加え、200rpmで6時間振とうした。pHを測定した後、0.45μmのメンブレンフィルターでろ過し、ろ液を分析試料とした。表1に亜鉛溶液濃度、体積を示す。pH調整は、実験終了後のpHが所定のpHとなるように、亜鉛溶液に1MのHClあるいはNaOH溶液を加えて行った。

2.4 スラグ溶出液による溶出実験
2.4.1 スラグ溶出液
スラグから溶解する物質に亜鉛を除去する能力があるかを検討するため、未洗浄及び洗浄スラグを対象に実験を行った。2Lのポリ瓶に蒸留水1L、スラグ30gを加え、200rpmで6時間振とうした。振とう後、ろ液とフナーロートで吸引ろ過を行った。

2.4.2 スラグ溶出液の調整
得られたろ液の400mLに1MのHClを加えてpHを8に調整し、スターラーで摂拌しながら1時間pHを保つ。同様に、ろ液400mLに1MのNaOHを加えてpH12に調整し、スターラーで摂拌しながら1時間pHを保つ。pH調整したスラグ溶出液を0.45μmのメンブレンフィルターで吸引ろ過した。その後、pHを測定し、分析用に50mLポリ瓶に採取し、濃硝酸0.25mLを加えた。比較のために400mLの蒸留水に1MのNaOHを加えて同様にpHを8、12に調整した溶液も用いた。

2.4.3 亜鉛除去実験
pH調整済みのスラグ溶出液あるいは蒸留水100mLに対して亜鉛溶液を1mL加え、200rpmで6時間振とう後、pHを測定し、0.45μmのメンブレンフィルターでろ過したろ液を分析用試料とした。pH8、12に調整した溶液に添加した亜鉛濃度は100mg/Lとした。

2.5 実飛灰溶出液からの除去実験
焼却飛灰はA市の一般廃棄物焼却施設より2014年10月に採取したものを利用した。この飛灰は、消石灰吹込みによる排ガス処理を行った後の飛灰で、タレート処理等の安定化処理等の安定化処理を行っていない。2Lのポリ瓶に蒸留水を1L、飛灰を15g加え、200rpmで6時間振とうした。振とう後、500gで10分間遠心分離し、上澄みを0.45μmのメンブレンフィルターで吸引ろ過して飛灰溶出液を得た。ろ液のpHを測定し、分析用試料を採取した。次に、500mLのポリ瓶にスラグ10g、得られた飛灰溶出液500mLを加え、200rpmで6時間振とうした。スラグは、洗浄スラグ、未洗浄スラグの両方で実験を行った。振とう後、pHを測定した後0.45μmのメンブレンフィルターでろ過し、ろ液を分析試料とした。

2.6 分析方法
分析用試料は濃硝酸を0.5%加えて保存した。Na, K, Ca, Mg, Znは原子吸光光度計(日立-Z2000)を用いて、フレーム原子吸光光度法により分析した。またAl, Siは、島津シークナル形プラズマ誘導発光分析装置(ICP-8100)により分析した。

3. 結果と考察
3.1 スラグの特性
本研究で用いたスラグの特性を表2-1に示す。スラグを洗浄した場合、比表面積は0.63m²/g、陽イオン交換能は0.20eq/100g-dryで、未洗浄スラグでは0.68-0.70m²/g、陽イオン交換能は3.5-3.7eq/100g-dryと、今回用いたスラグは比較的大きいものであった。

3.2 亜鉛の溶解度曲線
亜鉛溶解のpH依存性試験で得られた結果を図1-1に示す。pH7では104mg/Lであり、pHの増加と共に亜鉛濃度は減少し、pH10で0.01mg/Lに至った。さらにpHを増加させると亜鉛濃度は増加し、pH13で87.1mg/Lであった。この結果をもとに、スラグによる亜鉛除去率に対するpHの影響を検討する場合に、所定のpHで亜鉛の溶解度を超えないように亜鉛初期濃度を設定した。

<table>
<thead>
<tr>
<th>pH</th>
<th>設定濃度(mg/L)</th>
<th>体積(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0, 1, 2, 3, 4</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>0, 0.2</td>
<td>2.4</td>
</tr>
<tr>
<td>12</td>
<td>0, 0.5, 1, 1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>0, 0.5, 1.5, 13, 25, 50</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>比表面積(m²/g)</th>
<th>陽イオン交換能(eq/100g-dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>未洗浄</td>
<td>2.62</td>
<td>3.7</td>
</tr>
<tr>
<td>洗浄</td>
<td>2.26</td>
<td>3.5</td>
</tr>
</tbody>
</table>
3.3 スラグによる亜鉛除去における pH の影響

スラグによる亜鉛除去実験で得られた結果を図-2 に示す。図中の直線は以下の式で表されるヘンリー型の吸着等温線である。

\[q = K_d \times C_e \] (1)

\(K_d \) は分配係数 (L/kg), \(C_e \) は平衡濃度 (mg/L), \(q \) は吸着量 (mg/kg) である。決定係数 \(R^2 \) を表-3 に示す。未洗浄スラグの \(pH8 \) の条件を除いて決定係数が 0.9 以上の高い相関が得られた。未洗浄スラグの \(pH8 \) においては 0.7 程度と他の \(pH \) より低い相関となった。以上より、何れの \(pH \) でもヘンリー型の吸着等温線が適用出来たが、\(Dimitrova \) はフロイントリッヒ型の吸着等温線を報告している。吸着等温線の異なる理由として初期濃度が 10^{-4} - 10^{-3}M であること、液固比が 1000 であるなどの実験条件による違いが原因であると考えられた。

分配係数 \(K_d \) と \(pH \) の関係を図-3 に示す。\(pH8 \) では未洗浄スラグで 66.4L/kg、洗浄スラグで 88.3L/kg であり、\(pH9 \) に上昇すると未洗浄スラグでは 1470L/kg、洗浄スラグでは 286L/kg と最大値を示した。\(pH \) がさらに増加すると \(K_d \) は低下し、\(pH13 \) において未洗浄スラグでは 15.7L/kg、洗浄スラグでは 8.36L/kg であった。また、\(K_d \) は洗浄スラグよりも未洗浄スラグの方が高い値であった。以上のことから、スラグによる亜鉛除去は \(pH \) 依存性があり、\(pH9 \) で最大の吸着量を示すことが分かった。廃止後の埋立覆土内の \(pH \) は約 7-8 程度であり、吸着能が最大よりは低い条件で亜鉛を除去するになることが分かった。
スラグ溶出液による除去実験結果

スラグ溶出液に亜鉛溶液を添加した実験結果を図-4に示す。図中の想定値とは、溶液に添加後の亜鉛濃度の計算値である。想定値と蒸留水の結果を比較すると、想定値が1.08mg/Lに対し、pH8の蒸留水が0.96mg/L、pH12の蒸留水が0.98mg/Lと差が生じているが、分析上の誤差と考えられた。残存亜鉛濃度にほとんど差が無いため、亜鉛がpHによる溶解度の影響を受けないと言えた。蒸留水とスラグ溶出液の結果を比較すると、残存亜鉛濃度に殆ど差が無いことから、スラグ溶出液と亜鉛による沈殿反応は発生していないと考えられた。以上のことから、スラグから亜鉛を不溶化する成分は溶出しないと考えられた。

3.5 実飛灰溶出液からの除去実験結果

実飛灰にスラグを加えて亜鉛除去実験を行い、吸着量と平衡濃度から求めたK_dを図-4に示す。図中の想定値とは、溶液に添加後の亜鉛濃度の計算値である。想定値と蒸留水の結果を比較すると、想定値が1.08mg/Lに対し、pH8の蒸留水が0.96mg/L、pH12の蒸留水が0.98mg/Lと差が生じているが、分析上の誤差と考えられた。残存亜鉛濃度にほとんど差が無いことから、亜鉛がpHによる溶解度の影響を受けないと言われた。蒸留水とスラグ溶出液の結果を比較すると、残存亜鉛濃度に殆ど差が無いことから、スラグ溶出液と亜鉛による沈殿反応は発生していないと考えられた。以上の結果から、スラグから亜鉛を不溶化する成分は溶出しないと考えられた。

表-4 飛灰溶出液の組成(pH以外はmg/L)。

<table>
<thead>
<tr>
<th>pH</th>
<th>Pb</th>
<th>Zn</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Al</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.74</td>
<td>32</td>
<td>5</td>
<td>3,530</td>
<td>0</td>
<td>4,260</td>
<td>4,550</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

図-3 分配係数K_dに与えるpHの影響(●：蒸留水・未洗浄、○：蒸留水・洗浄、■：飛灰溶出液・未洗浄、□：飛灰溶出液・洗浄)。

図-4 スラグ溶出液による亜鉛除去結果。

3.6 スラグによる亜鉛除去メカニズムの推定

本研究により得られた実験結果から、スラグによる亜鉛除去メカニズムを推定すると、3.4で述べたようにスラグからの溶出物による除去は無視できると考えられた。また、3.5で述べたように陽イオンによる妨害が推定されたので、スラグによる亜鉛除去能は陽イオン交換によると考えられた。これは、3.3で述べたように比表面積の小さい洗浄スラグの方がK_dの値が小さいことを矛盾しない。

本研究では、廃止後の最終処分場の埋立層において、覆土として用いる高炉スラグの亜鉛除去能に与えるpHの影響に関する実験を行った。得られた知見を以下に示す。

1) 蒸留水を用いた場合、pH8、9、12、13においてヘンリー型の吸着等温線が適用出来た。また、pH9でK_dが最大となり、K_dは未洗浄で1460L/kg、洗浄で286L/kgとなった。

2) スラグから亜鉛を不溶化する成分は溶出しないと考えられた。また、飛灰溶出液に含まれる亜鉛以外の陽イオンが吸着されている可能性があるため、イオン交換により亜鉛が吸着されていると考えられた。

3) 覆土としてスラグを用いる場合、陽イオンの亜鉛吸着能への影響は小さいと考えられた。

4) 廃止後の埋立層内のpHは約7-8であり、K_dはpH9で最大となり、実際の埋立層内では吸着能が最大よりは低い条件で亜鉛を除去することができ
スラグ溶出液による除去実験結果

スラグ溶出液に亜鉛溶液を添加した実験結果を図-4に示す。図中の想定値とは、溶液に添加後の亜鉛濃度の計算値である。想定値と蒸留水の結果を比較すると、想定値が1.08mg/Lに対し、pH8の蒸留水が0.96mg/L、pH12の蒸留水が0.98mg/Lと差が生じているが、分析上の誤差と考えられた。残存亜鉛濃度にほとんど差が無いことから、亜鉛がpHによる溶解度の影響を受けていないと言えた。蒸留水とスラグ溶出液の結果を比較すると、残存亜鉛濃度に殆ど差が無いことから、スラグ溶出液と亜鉛による沈殿反応は発生していないと考えられた。以上のことから、スラグから亜鉛を不溶化する成分は溶出しないと考えられた。

実飛灰溶出液からの除去実験

実飛灰にスラグを加えて亜鉛除去実験を行い、吸着量と平衡濃度から求めたK_dを図-4に示す。3.3の蒸留水での亜鉛除去実験結果と比較すると、飛灰溶出液と同じpH12.5のときの蒸留水のK_dが未洗浄スラグで38.2L/kg、洗浄スラグで26.0L/kgであるのに対し、飛灰溶出液を用いた場合のK_dは未洗浄スラグで24.0L/kg、洗浄スラグで13.2L/kgと約1/2に減少した。このことから、飛灰溶出液中の物質が亜鉛吸着を妨害した可能性が考えられた。実験に用いた飛灰溶出液の分析結果を示す。飛灰溶出液には、陽イオンであるNa、K、Caが3000mg/L以上含まれていた。スラグによる亜鉛吸着が陽イオン交換であるとすると、Nilforoushanら7)が陽イオンがスラグの亜鉛吸着を妨害することを報告していることから、飛灰中から高濃度で溶け出した陽イオンがスラグへの亜鉛吸着を妨害したと考えられた。今回の飛灰溶出液の実験ではK_dが蒸留水より低い結果となったが、最終処分場の廃止後、雨水の影響により実飛灰からの溶出液中の濃度は低くなると考えられるため、覆土としてスラグを用いる場合、陽イオンの亜鉛吸着能への影響は小さいと考えられるが、陽イオンの影響については今後検討する必要がある。

スラグによる亜鉛除去メカニズムの推定

本研究により得られた実験結果から、スラグによる亜鉛除去メカニズムを推定すると、3.4で述べたようにスラグからの溶出物による除去は無視できると考えられた。また、3.5で述べたように陽イオンによる妨害が推定されたので、スラグによる亜鉛除去能は陽イオン交換によると考えられた。これは、3.3で述べたように比表面積の小さい洗浄スラグの方がK_dの値が小さいことと矛盾しない。

おわりに

本研究では、廃止後の最終処分場の埋立層内において、覆土として用いる高炉スラグの亜鉛除去能に与えるpHの影響に関する実験を行った。得られた知見を以下に示す。

1) 蒸留水を用いた場合、pH8、9、12、13においてヘンリー型の吸着等温線が適用出来た。また、pH9でK_dが最大となり、未洗浄で1460L/kg、洗浄で286L/kgとなった。

2) スラグからは亜鉛を不溶化する成分は溶出しないと考えられた。また、飛灰溶出液に含まれる亜鉛以外の陽イオンが吸着されている可能性があるため、イオン交換により亜鉛が吸着されていると考えられた。

3) 覆土としてスラグを用いる場合、陽イオンの亜鉛吸着能への影響は小さいと考えられた。

4) 廃止後の埋立層内のpHは約7-8であり、K_dはpH9で最大となることから、実際の埋立層内では吸着能が最大よりは低い条件で亜鉛を除去するになることが分かった。

参考文献

In order to clarify the influence of pH, cation, etc. of solution after simultaneously recovering ammonium, phosphorus and potassium from swine wastewater on biological treatment, the solution was biologically treated with an intermittent aeration process. An inhibition of TOC and T-N removal was not found although the concentration of Na and Cl exceeded the concentration which was reported to cause inhibition. Even if pH was 9.5, the inhibition was not found. On the contrary, at a pH of 9.5 biological removal of TOC and T-N was promoted. It was considered that simultaneously recovering ammonium, phosphorus and potassium by crystallization from swine wastewater would not hinder biological treatment.

Keywords: Swine wastewater, Crystallization, Biological treatment, Intermittent aeration

1. はじめに

開発途上国における人口増加による穀物増産やバイオ燃料の生産等により化学肥料の需要が世界的に増大しており、化学肥料の主要な成分であるリン、カリウムは原産地の偏在や可採量の減少により価格が上昇している。産出国では輸出を制限する動きもみられ、リン鉱石は全量、カリウムもほぼ全量を海外からの輸入に依存する我が国にとって深刻な問題であり、資源を循環させることが重要である。

一方、リンに加え窒素は閉鎖性水域の富栄養化の要因である。特に豚舎から排出される尿汚水はリンや窒素、BOD濃度が非常に高く、水質汚濁の要因とされている。公共水域への排出水に関して水質汚濁防止法におけるアンモニア、アンモニア化合物、亜硝酸化合物および硝酸化合物（以下硝酸性窒素類）では一律排水基準が100 mg/Lに定められているが、畜産廃水については現在では一律排水基準を達成することが困難なことから、暫定排水基準として2013年6月までは900 mg/L、それ以降は700 mg/L（平成28年6月末まで）が適用されている。将来的に暫定基準は引き下げられる可能性が高く、畜産廃水処理での窒素除去は重要な課題である。以上のことから、養豚廃水から窒素、リン、カリウムを回収することは資源回収、環境保護の面で極めて重要である。

養豚廃水処理の一般的な方法として、まず一次処理（前処理）で、沈殿分離や浮上分離、ふるいやスクリーンなど物理的処理により固形物を除去し、二次処理で活性汚泥法や嫌気性発酵などの生物学的処理により主に溶解性汚濁物質の除去、三次処理（高度処理）で硝化脱窒法などの生物学的処理や凝集分離法などの化学的処理により窒素やリンを除去する。C/N比を増加させる方法として、リン酸態リン（PO₄-P）とアンモニア態窒素（NH₄-N）を含む廃水にマグネシウム源を添加することでリン酸マグネシウムアンモニア（以下MAP）を生成させ、廃水中からPO₄-PおよびNH₄-Nを除去し、その後に生物学的脱窒素法を行う方法がある。この方法では、比較的安価で廃水中からNH₄-Nを除去ることができ、廃水に必要なC/N比に近づけることが可能となる。MAP生成後処理液をろ過し、ろ液を好気と嫌気を組み合わせた生物学的処理を行うことにより、硝化・脱窒が行える上、嫌気処理を行うことにより廃水中のBODやCODも除去できることが報告されている。

リン及び窒素を除去するMAP法に加え、リン及びカリウムを除去するMPP（リン酸マグネシウムカリウム）法がある。一般的にMPPは高いpHの下で処理が行われるため、
通常生物処理後に行われる。養豚廃水における生物処理では、pHが7～8.5程度が最適である1)とされており、MPP生成のpH10～11.57)では正常な生物処理が行われない。しかしこのMPP生成を生物処理の前にMAP生成と同時にすることは可能となる。

そこで橋本7)は養豚廃水一次処理水を対象としてN, P, Kをリン酸マグネシウム塩として回収する実験を行っている。二次処理で活性污泥を適用する際、好気時間と嫌気時間を繰り返す回分式の間欠曝気を行うことにより窒素とリンを同時に除去することが可能となる。橋本はMAP及びMPPを同時に生成する条件をpH8、P/(N+K)=1.5、Mg/P=1.35とし、回収実験後のP残存濃度は363mg/Lで暫定排出基準を超えており、その原因としてMgがMAPやMPP以外の反応をしていると考えられ、その反応を制御あるいはMg添加割合を増やすことでP回収率は増加し、P残存濃度は改善されるとしている。

MAP及びMPPを適用する際、マグネシウム源として塩化マグネシウムの添加により、処理水中のCl濃度が増加する。活性汚泥の酸素消費や有機物除去について、廃水のCl濃度が5000～10000ppmを超えると正常な働きが期待できないとされている8)。また、嫌気処理の際、Mg濃度は1000mg/L以上、Na濃度は3500mg/L以上、K濃度2500mg/L、Ca濃度は2500mg/L以上で阻害を示す報告9)があり、MAP及びMPP生成後に残存するMg等が阻害を起こす可能性が考えられる。

そこで本研究では、晶析処理により窒素、リン、カリウムを同時に回収した処理水を用いて、間欠曝気を用いた回分式の生物処理実験を行い、MAP及びMPPを同時に生成後の処理水が生物処理に与える影響を明らかにすることを目的とした。

2. 実験方法

2.1 養豚廃水、汚泥について
実験に用いた養豚廃水は宮崎県内の養豚場から2015年11月19日に固液分離後の一次処理水を採取し、10000Gで10分間遠心分離した後、5℃のろ紙を用いてブフナー漏斗で吸引ろ過し、冷蔵保存したもの。植種用の汚泥は流入水質BOD1100mg/L、T-N1100mg/L、T-P100mg/Lの宮崎市佐土原クリーンパークの限外ろ過膜循環槽から硝化脱窒汚泥を2015年8月に採取し、冷蔵保存したもの。前処理として静置後、上澄み水を捨て濃縮させてから実験に用いた。

2.2 晶析法によるN, P, K除去処理
晶析実験に使用する保存用のマグネシウム溶液50000mg/Lとリン溶液90000mg/Lをそれぞれ塩化マグネシウム六水和物および濃硫酸を用いて作成した。表1に晶析条件を示す。廃水2.5Lに対し、分析した保存溶液の濃度から設定したP/(N+K)およびMg/Pとなるようにマグネシウム溶液とリン溶液の体積を算出し、リン溶液、マグネシウム溶液の順で養豚廃水一次処理水に摂拌しながら加え、pH、電気伝導度を測定後、分析用のサンプルを採取した。5Mの水酸化ナトリウムを加えてpH調整を行い、200rpmで3時間摂拌し、30分ごとにpHを測定して、必要な場合は水酸化ナトリウムで調整を行った。3時間摂拌後、10000Gで5分間遠心分離し、5℃のろ紙で全量吸引ろ過した。pH、電気伝導度測定後、分析用のサンプルを取り出し冷蔵保存した。

2.3 回分式生物処理実験
1LのビーカーにMLSS濃度が6000mg/Lとなるように汚泥量を120mL、処理原水を180mL加えた。好気条件、嫌気条件を23時間サイクルで交互に行った。実験は好気条件から開始し、スターラーで摂拌しながらエアポンプを用いて0.1L/minで23時間曝気した。好気時間終了時にORPを測定し、エアポンプを停止した。嫌気時間開始と同時にジャーテスターを用いて60rpmで摂拌した。23時間嫌気時間終了時にORPを測定し、ジャーテスターを停止後静置し、汚泥を沈降させてから上澄みを150mL採水した。採水後同量の処理原水をビーカーに加え、曝気、摂拌を開始した。以降、同サイクルを繰り返した。汚泥採取は嫌気時間終了後ORPを測定し、汚泥濃度測定用に約40mL採水した。スターラーを停止し静置させてから汚泥採取との合計が150mLとなるように上澄みを採取した。

汚泥濃度測定以外の採水したサンプルは5000Gで10分間遠心分離後5℃のろ紙で吸引ろ過し、pH測定後電解用、TOC、T-N、NH4-N、イオンクロ用、NO2-N用に分け、金属、リン用には濃硝酸0.5mL、TOC、T-N、NH4-N、イオンクロ用には濃硫酸0.5mL加え、冷蔵保存した。NO2-Nは当日分析を行った。

2.4 分析方法
各分析項目について、pHはガラス電極法(HORIBA、F-74BW)、ORPはガラス電極法(HORIBA、D-55)を用いて分析を行った。アンモニア性窒素はイオン交換樹脂吸光光度法、Na、K、Mg、Caはフレーム原子吸光光度法(HITACHI、Z-2000)、PはICP-AES(SHIMIZU、ICPS-8100)、全窒素及びTOCはTOCアナライザー(SHIMADZU、TGM-1、TOC-VCPH)、硝酸塩、塩素はイオンクロマトグラフを用いて分析を行った。
3. 結果と考察

3.1 養豚廃水の組成、塩濃度

表2に養豚廃水一次処理水の水質を示す。pHは小さいがアルカリ性を示し、塩濃度は16,100 mg/Lであった。

3.2 晶析処理結果

3.2.1 晶析処理結果

表3に晶析処理結果を示す。表中の「反応前」とはpH調整を行う前の、適用廃水一次処理水に各P/(N+K)、Mg/Pとなるように塩化マグネシウム溶液とリン溶液を加えた溶液の分析結果である。P/(N+K)、Mg/Pの値は反応後は設定値、反応後の値は反応前溶液を分析した実測値である。pH調整用に加えた水酸化ナトリウムは反応前溶液体積の0.1%以下であった。晶析処理によりMAP、MPPが生成されたが、反応終了後は反応前に比べてMg、K、T-P、T-N、NH4-Nの濃度が減少し、反応終了後の各処理水中のC/Nは反応前と比べて高くなった。表には示さないが、反応前のpHはリン溶液作成に用いた濃硫酸により著しく低くなったが、反応後終了後は水酸化ナトリウムによる調整により設定値に近づくことができた。なお、No3-N、No2-Nともに検出されなかった。

3.2.2 処理水水質の評価

活性汚泥の酸素消費や有機物除去について、廃水のCl濃度が5000~10000 ppmを超えると正常な働きが期待できるとされており、本実験の生物処理原水は9968 mg/L〜13148 mg/Lで阻害が起こる範囲である。また嫌気処理の際、Na濃度が3500 mg/L以上で阻害を示すとされており、本実験の生物処理原水は8198 mg/L〜11441 mg/Lで阻害が起こる範囲である。晶析処理後の生物処理原水のC/N比は4.5〜6.3であり、生物処理に必要とされるC/N=1.0の十分満たしていなかった。

3.3 晶析処理条件の生物処理への影響

3.3.1 体積、pH、ORP、塩濃度の経時変化

図1 a)に生物処理中の各ビーカー内の体積変化を示す。時間の経過と共に、曝気による蒸発や採水の際の誤差により体積は減少した。

図1 b)は晶析処理のpHの経時変化を示す。図には示していないが、未処理の処理原水はpH8.2〜8.5、pH9.0で晶析処理した原水のpHは8.8〜9.3、pH9.5で晶析処理した原水のpH9.5〜9.8でほぼ一定であった。晶析処理をしない場合、処理水pHは処理原水よりも高いpHを示し、実験中ほぼ一定であった。晶析処理した場合、処理水pHは実験の最初は処理原水よりも低かったが時間の経過と共に、曝気による蒸発や採水の際の誤差により体積は減少した。

表2 養豚廃水一次処理水の水質（pH以外（mg/L））

<table>
<thead>
<tr>
<th>pH</th>
<th>NO3-N</th>
<th>NO2-N</th>
<th>NH3-N</th>
<th>T-N</th>
<th>TOC</th>
<th>Na</th>
<th>Ca</th>
<th>K</th>
<th>Mg</th>
<th>T-P</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.21</td>
<td>0</td>
<td>0</td>
<td>1,170</td>
<td>1,230</td>
<td>456</td>
<td>279</td>
<td>79</td>
<td>998</td>
<td>12</td>
<td>24</td>
<td>321</td>
</tr>
</tbody>
</table>

表3 晶析処理結果（Na以降の単位（mg/L））

<table>
<thead>
<tr>
<th>pH*</th>
<th>P/(N+K)*</th>
<th>Mg/P*</th>
<th>EC (cm/s)</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Cl</th>
<th>T-P</th>
<th>TOC</th>
<th>T-N</th>
<th>NH3-N</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.5</td>
<td>1.35</td>
<td>3.63</td>
<td>2,550</td>
<td>4,570</td>
<td>829</td>
<td>3</td>
<td>13,300</td>
<td>4,060</td>
<td>403</td>
<td>1,030</td>
<td>966</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>1.35</td>
<td>3.87</td>
<td>2,700</td>
<td>4,920</td>
<td>828</td>
<td>3</td>
<td>15,100</td>
<td>4,860</td>
<td>370</td>
<td>954</td>
<td>930</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1.35</td>
<td>4.42</td>
<td>2,450</td>
<td>4,690</td>
<td>808</td>
<td>1</td>
<td>16,700</td>
<td>5,580</td>
<td>331</td>
<td>1,010</td>
<td>969</td>
<td>0.33</td>
</tr>
<tr>
<td>9.5</td>
<td>1.5</td>
<td>1.35</td>
<td>3.21</td>
<td>2,890</td>
<td>4,420</td>
<td>848</td>
<td>2</td>
<td>12,700</td>
<td>4,220</td>
<td>311</td>
<td>1,060</td>
<td>911</td>
<td>0.29</td>
</tr>
<tr>
<td>9</td>
<td>1.45</td>
<td>1.43</td>
<td>3.04</td>
<td>2,800</td>
<td>520</td>
<td>424</td>
<td>35</td>
<td>10,000</td>
<td>11</td>
<td>341</td>
<td>59</td>
<td>25</td>
<td>5.81</td>
</tr>
<tr>
<td>9</td>
<td>1.79</td>
<td>1.29</td>
<td>3.58</td>
<td>9,970</td>
<td>279</td>
<td>147</td>
<td>27</td>
<td>11,300</td>
<td>21</td>
<td>324</td>
<td>51</td>
<td>21</td>
<td>6.35</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1.3</td>
<td>3.6</td>
<td>11,400</td>
<td>584</td>
<td>115</td>
<td>23</td>
<td>13,100</td>
<td>10</td>
<td>277</td>
<td>57</td>
<td>25</td>
<td>4.87</td>
</tr>
<tr>
<td>9.5</td>
<td>1.57</td>
<td>1.34</td>
<td>3.21</td>
<td>8,820</td>
<td>472</td>
<td>280</td>
<td>27</td>
<td>9,960</td>
<td>6</td>
<td>273</td>
<td>61</td>
<td>27</td>
<td>4.51</td>
</tr>
</tbody>
</table>

*: 反応前は設定値、反応後は実測値である
経過と共に徐々に増加し、6日目に処理原水pHとほぼ同じ値となりその後一定となった。

図1 c)にORPの経時変化を示す。好気時間終了時（奇数日）は、1サイクル前の嫌気時間終了時（偶数日）よりもORPは高くなかったが、晶析処理した条件においては時間の経過と共にその差は小さくなり、実験終了時にはほとんど差が見られなかった。

図1 d)に汚泥濃度の経時変化を示す。全ての条件において、時間の経過と共に、採水や汚泥濃度測定のためのサンプリングなどで汚泥が抜き取られ汚泥濃度は低くなり、実験終了時には初期MLSS濃度6000mg/Lの1/3程度とったと考えられた。

3.3.2 金属イオン、塩素イオンの経時変化

表4に実験終了時の処理水中の金属、塩素濃度を示す。各処理原水に比べ、実験終了時の各イオン濃度は低くなったが、晶析処理条件のNa、Cl濃度は阻害を示す濃度範囲のままであった。

3.4 TOC、Nの経時変化

図2 a)に各条件のTOCの経時変化を示す。図には示さないが、各処理原水のTOC濃度は未処理が平均457mg/L、晶析する場合は280～330mg/Lでほぼ一定であった。生物処理後、どの条件においても最初の採水でTOCは大きく減少し、その後時間の経過とともに高くなり一定となった。

図2 b)に各条件のT-Nの経過時間変化を示す。図には示さないが、各処理原水のT-N濃度は未処理が平均1,200mg/L、晶析する場合は50～60mg/Lでほぼ一定であった。未処理の条件では、最初の採水でT-Nは大幅に減少し、その後時間の経過とともに濃度は増加した。

図2 c)に各条件のNH₄-Nの経時変化を示す。図には示さないが、各処理原水のT-N濃度は未処理が平均1,020mg/L、晶析する場合は40～50mg/Lでほぼ一定であった。晶析する条件では、最初の採水でNH₄-Nは減少し、その後は約40mg/Lで一定となった。未処理の条件では、最初の採水でNH₄-Nは減少し、その後は一定となった。

<table>
<thead>
<tr>
<th>pH</th>
<th>P/(N+K)</th>
<th>Mg/P</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>1.57</td>
<td>1.34</td>
<td>7,900</td>
<td>227</td>
<td>227</td>
<td>25</td>
<td>7,570</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>1.3</td>
<td>9,100</td>
<td>120</td>
<td>120</td>
<td>21</td>
<td>9,780</td>
</tr>
<tr>
<td>9</td>
<td>1.79</td>
<td>1.20</td>
<td>7,900</td>
<td>152</td>
<td>152</td>
<td>26</td>
<td>8,120</td>
</tr>
<tr>
<td>9</td>
<td>1.45</td>
<td>1.45</td>
<td>6,920</td>
<td>364</td>
<td>364</td>
<td>36</td>
<td>7,890</td>
</tr>
<tr>
<td>9</td>
<td>1.79</td>
<td>1.29</td>
<td>7,900</td>
<td>152</td>
<td>152</td>
<td>26</td>
<td>8,120</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
<td>1.3</td>
<td>9,100</td>
<td>120</td>
<td>120</td>
<td>21</td>
<td>9,780</td>
</tr>
<tr>
<td>9</td>
<td>1.45</td>
<td>1.45</td>
<td>6,920</td>
<td>364</td>
<td>364</td>
<td>36</td>
<td>7,890</td>
</tr>
</tbody>
</table>

表4 実験終了時処理水中金属、塩素濃度(mg/L)。
経過と共に徐々に増加し、6日目に処理原水pHとほぼ同値となりその後一定となった。図1c)にORPの経時変化を示す。好気時間終了時(奇数日)は、1サイクル前の嫌気時間終了時(偶数日)よりもORPは高くなったが、析析処理した条件においては時間が経過と共にその差は小さくなり、実験終了時にはほとんど差が見られなかった。
図1d)に汚泥濃度の経時変化を示す。全ての条件で、時間の経過と共に、採水や汚泥濃度測定のためのサンプリングなどで汚泥が抜き取られ汚泥濃度は低くなり、実験終了時には初期MLSS濃度6,000 mg/Lの1/3程度となったと考えられた。

3.3.2金属イオン、塩素イオンの経時変化
表4に実験終了時の各処理水中の金属、塩素濃度を示す。各処理原水に比べ、実験終了時の各イオン濃度は低くなったが、析析処理条件のNa、Cl濃度は阻害を示す濃度範囲のままであった。

3.4TOC、Nの経時変化
図2a)に各条件のTOCの経時変化を示す。図には示さないが、各処理原水のTOC濃度は未処理が平均457 mg/L、析析処理した場合は280~330 mg/Lでほぼ一定であった。生物処理後、どの条件においても最初の採水でTOCは大きく減少し、その後時間の経過とともに高くなり一定となった。
図2b)に各条件のT-Nの経過時間変化を示す。図には示さないが、各処理原水のT-N濃度は未処理が平均1,200 mg/L、析析処理した場合は50~60 mg/Lでほぼ一定であった。析析処理した条件では、最初の採水でT-Nは減少し、その後は約40 mg/Lで一定となった。未処理の条件では、最初の採水でT-Nは大幅に減少し、その後時間の経過と共にともに濃度は増加した。図2c)に各条件のNH4-Nの経時変化を示す。図には示さないが、各処理原水のT-N濃度は未処理が平均1,020 mg/L、析析処理した場合は40~50 mg/Lでほぼ一定であった。T-Nと同様、析析処理した条件では、最初の採水でNH4-Nは減少し、その後は約30 mg/Lで一定となった。未処理の条件では、最初の採水でNH4-Nは大幅に減少し、その後時間の経過と共にともに濃度は増加した。また、本実験では全条件において硝酸、亜硝酸はほとんど検出されなかった。

3.5 TOC、T-Nの除去率
図3にTOC、T-Nの除去率を示す。除去率R(%)は次式で求めた。

\[R_{i+1} = \left(\frac{C_{in,i} \times V_{in,i} - C_{i+1} \times V_{out,i+1}}{C_{i+1} \times (V_T,i+1 - V_{out,i+1}) + C_{in,i} \times V_{in,i}} \right) \times 100 \]

ただし、iは採水回数、C_{in}：処理原水濃度(mg/L)、C：処理水濃度(mg/L)、V_{in}：ビーカー内体積(mL)、V_{out}：原水添加体積(mL)、V_{in}：採水体積(mL)である。TOC、T-Nどちらについても、pH9.0で処理した条件と比較してpH9.5で処理した条件の方が除去率が高い結果となった。

3.6 TOC、T-Nの汚泥濃度当たり除去率
図4にTOC、T-Nの汚泥当たり除去率を示す。除去率を同日の汚泥濃度で除することにより求めた。奇数日の汚泥濃度は測定していないので、その前後の濃度の平均値を用いた。TOCについて、どの条件においても時間の経過と共に汚泥当量の除去率は増加した。未処理の処理水とpH9.0で析析処理した条件を比較すると、汚泥当たりの除去率はほとんど同じ推移であった。一方、P/(N+K)、Mg/Pが同じ
で pH9.0 と 9.5 の条件を比較すると、今実験期間の前半では差はあまりなく、後半では pH9.0 で処理した条件よりも汚泥当たりの除去率は高く、その後は pH9.5 で処理した条件が pH9.0 で処理した条件より高くなった。このことから、TOC 分解について、Na 濃度 8200～11400 mg/L, Cl 濃度 10000～13100 mg/L, pH8.2～9.5 に対し阻害の差はないと考えられる。

T-N については、未処理の処理水と pH9.0 で処理した条件を比較すると、未処理の汚泥当量の除去率は未処理の処理水のほうが高く、未処理の処理水は時間の経過と共に汚泥当量の除去率は高くなったが、pH9.0 で処理した条件は汚泥当量の除去率を増減を繰り返し、最終的な除去率は未処理のものより低かった。pH9.0 で処理した条件の中では、Na および Cl 濃度が一番低い条件の除去率が低い結果となった。pH9.0 で処理した条件の中では、Na および Cl 濃度が一番低い条件の除去率が低い結果となった。pH9.0 で処理した条件の汚泥当量の除去率を大幅に高くなった。このことから、硝化脱窒について Na 濃度 8200～11400 mg/L, Cl 濃度 10000～13100 mg/L, pH8.2～9.5 では阻害はないと考えられる。

4. おわりに

本研究は晶析処理により養豚廃水一次処理水中から窒素、リン、カリウムを同時回収した後の処理水の pH や重金属イオンによる生物処理への影響を検討することを目的とした。得られた知見を以下に示す。
1) 晶析処理の際に加えた塩化マグネシウム溶液、水酸化ナトリウムにより処理原水中の Cl, Na 濃度は生物処理に阻害を起こすとされる濃度となったが、今回の間欠曝気を用いた回分式の生物処理においては阻害は認められなかった。
2) pH は 9.5 であっても阻害は認められず、逆に TOC, T-N の分解を促進した。

以上から、養豚廃水の生物処理前に、晶析法による窒素、リン、カリウムの同時回収を行ってもその後の生物処理には支障がないと考えられた。

参考文献
2) 和木和子、安田真子、福木泰之、黒田和孝、坂井隆宏、鈴木直人、鈴木良徳、松葉賢次、鈴木正好：養豚廃水の活性污泥処理施設から排出される窒素の特性、水環境学会誌、Vol.33, No.4, pp.33-39, 2010。
3) 上三栄一：回分式活性污泥法による硝化・脱窒、水質汚濁研究、Vol.8, No.3, pp.8-12, 1985。
5) 橋本文亮：養豚廃水の窒素、リン・カリウムの同時回収に関する研究、宮崎大学工学部土木工学科卒業論文、2014。
6) 佐藤孝雄、高木元弥：活性污泥に対する塩化マグネシウム溶液および海水の影響について、下水道学会誌、Vol.4, No.37, pp.14-20, 1967。
7) 宝月章彦：嫌気性生物処理の特長、環境技術、Vol.33, No.6, pp.412-416, 2004。
8) 井出昌樹、武藤栄夫、A-54 硝化液循環型脱窒機能浄化槽を想定した流入水の C/N 比条件に関する検討、社団法人空気調和・衛生工学会学術講演会論文集、Vol.2, pp.553-556, 1994。
Different Frequencies between Power and Efficiency in Wireless Power Transfer

Muhammad Afnan HABIBIA, Ichijo HODAKAB)

Abstract

Wireless Power Transfer (WPT) has been recognized as a common power transfer method because it transfers electric power without any cable from source to the load. One of the physical principle of WPT is the law of electromagnetic induction, and the WPT system is driven by alternative current power source under specific frequency. The frequency that provides maximum gain between voltages or currents is called resonance frequency. On the other hand, some studies about WPT said that resonance frequency is able to produce high power and high efficiency on the WPT system. There are cases that make WPT system has two different frequencies. One leads maximum power and another leads maximum efficiency. If WPT system works under the resonance frequency, WPT produces maximum power with lower efficiency on it. As the solution of that, the intersection frequency able to balance both power and efficiency.

Keywords: Wireless Power Transfer, Frequency, Resonance, Power, Efficiency

1. INTRODUCTION

Electric power, generated by power supply, needs transmission system to be delivered to electric load. Generally, wires should be suitable for transmitting electric power because they are cheap and dependable. Many electric loads supplied by wires which are represented as electronic devices. The number of devices increases as the human population increases. The number of used wires also increases. It would be difficult to arrange the wires. In order to decrease wires, people do research about wireless power transmission.

Wireless Power Transfer (WPT) is an electronic device which capable to transfer electric power through the electric load without conductor. There are four parts in this device: power supply, transmitter, receiver, and load. A power supply generates electric power which is equal to the multiplication of the voltage and the current in this circuit. This power supply connected to transmitter. A transmitter transforms the electric energy in several turns of conductor into magnetic field. This magnetic field spread along the transmitter and intersect the another coil. This coil is receiver. Magnetic field is induced in receiver and transformed into electric energy. Then the electric load, series connected with receiver, could be energized.

WPT system should decide about how much the frequency applied in the system. It also consider the produced power and the efficiency as well.

Some people may build their own WPT systems. But, WPT should be improved even though it has many benefits.

There are several studies about improving WPT. André Kurs, et al.1) who successfully made WPT over two meters distance with 40% efficiency. Teck Chuan Beh, et al. 2) improved WPT by using the impedance matching circuit to adjust the resonance frequency to 13.56 MHz at different certain distances. Vladimir Kindl, et al. 3) explained the measured and predicted WPT efficiencies for small devices. Yusuke Moriwaki, et al. 4) has reduced reflected power by using DC/DC converters.

WPT which operates in a resonance frequency able to produce higher power than other frequencies. But, it does not mean that high power WPT always has high efficiency on the system. It means that WPT has different frequencies which is producing high power or producing high efficiency. This paper explains about the relation between produced power and efficiency of the WPT. The produced power and the efficiency of the WPT are plotted in the angular frequency axis. These graphs shows what kind of the WPT is considered.

2. EVALUATION METHOD

WPT can be represented as electric circuit called equivalent circuit. This equivalent circuit provides the behavior of the currents and voltages in the WPT system. The product of the voltage and the current is the power. Then, the output power is the multiplication of the output voltage and output current. So do the

a) Master Student, Department of Environmental Robotics
b) Professor, Department of Environmental Robotics
input power. The ratio between the output power and the input power is the efficiency.

Let the WPT circuit is shown at Figure 1. \(u \) is a sinusoidal power supply with internal resistance \(R_1 \). The transmitter coil \(L_1 \) which has parasitic components. They are parasitic capacitor \(C_1 \) and resistor \(R_1 \). So do the receiver coil \(L_2 \) with both \(C_2 \) and \(R_2 \). This receiver is series connected with the load \(R_4 \).

![Fig 1. The Equivalent Circuit of the WPT](image)

To get the equations of the circuit, Kirchoff’s Current Law (KCL) and Kirchoff’s Voltage Law (KVL) are used. The equations contains integral and/or differential because of L-C components. When there are \(n \)th-order differential equations, state-space equations can be obtained. The state-space equation from the circuit is

\[
\dot{x} = Ax + Bu
\]

Where

\[
\dot{x} = \frac{dx}{dt} \quad \quad x = [v_1 \quad v_2 \quad i_1 \quad i_2]^T
\]

\[
\Delta = L_1 L_2 - M_1 M_2
\]

\[
A = \frac{1}{\Delta} \begin{bmatrix}
0 & 0 & \frac{\Delta}{C_1} & 0 \\
0 & 0 & 0 & \frac{\Delta}{C_2} \\
L_2 & M_2 & -(R_1 + R_2) L_2 & (R_3 + R_4) M_2 \\
M_1 & -(R_1 + R_2) M_1 & -(R_3 + R_4) L_1 & 0
\end{bmatrix}
\]

\[
B = \frac{1}{\Delta} \begin{bmatrix}
0 \\
0 \\
0 \\
L_2 \\
-M_1
\end{bmatrix}
\]

The solution of state-space equation give the equation of state variables \(x(t) \) in time function. While matrix \(A \) from Eq. (1) is in stable condition, \(x(t) \) should be in steady-state condition which had been derived as \(x_s(t) \). By applying sinusoidal input \(u = \sin(\omega t) \), the steady-state of state variables \(x_s(t) \) is:

\[
x_s(t) = -(\omega I \cos(\omega t) + A \sin(\omega t))(\omega^2 I + A^2)^{-1}B
\]

Where \(I \) is the identity matrix which has four in both columns and rows.

The average power is the integral of the power over one period. The power input \(P_1 \) and output \(P_4 \) in steady-state condition are:

\[
P_1 = \frac{1}{T} \int_0^T (u(t) - R_1 i_{s1}(t)) dt
\]

\[
P_4 = \frac{1}{T} \int_0^T R_4 i_{s2}^2(t) dt
\]

Where period \(T = \frac{2\pi}{\omega} \)

Then, the efficiency, the ratio between output and input power is:

\[
\eta = \frac{P_4}{P_1}
\]

3. ANALYSIS AND RESULT

Numerical values of the circuit components is convenient to be applied. It gives more simple analysis of power output \(P_4 \) and the efficiency \(\eta \) in respect with angular frequency \(\omega \). The numerical values are given in three different conditions. Every condition has different resonance frequency.

Condition 1

To give more details explanation, the circuit components is set as in Table 1.

<table>
<thead>
<tr>
<th>Circuit Components Value</th>
<th>Components Value</th>
<th>Components</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>50(\Omega)</td>
<td>(R_3)</td>
<td>0.1(\Omega)</td>
</tr>
<tr>
<td>(R_2)</td>
<td>0.1(\Omega)</td>
<td>(R_4)</td>
<td>50(\Omega)</td>
</tr>
<tr>
<td>(L_1)</td>
<td>10(\mu)H</td>
<td>(L_2)</td>
<td>10(\mu)H</td>
</tr>
<tr>
<td>(M_1)</td>
<td>0.5(\mu)H</td>
<td>(M_2)</td>
<td>0.5(\mu)H</td>
</tr>
<tr>
<td>(C_1)</td>
<td>1(\text{nF})</td>
<td>(C_2)</td>
<td>1(\text{nF})</td>
</tr>
</tbody>
</table>

All values in the in the Table 1 is subtituted in Eq. (1) to (5). The power output \(P_4 \) (\(\mu \)W) and efficiency \(\eta \)
(%) is plotted with respect with angular frequency \(\omega \) (rad/s). Then, the plot result can be obtained.

\[
\omega_{\text{res}} = \omega_{\eta} = 1.06 \times 10^7 \text{ rad/s}
\]

All components values are the same but there is small changes. For condition 2, Only the value of \(L_2 \) is changed and shown in Table 2. For condition 3, Only the value of \(C_2 \) is changed and shown in Table 3.

Table 2. Components Value for Condition 2

<table>
<thead>
<tr>
<th>Circuit Components Value</th>
<th>Components</th>
<th>Value</th>
<th>Components</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>50Ω</td>
<td>R_2</td>
<td>0.1Ω</td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>0.1Ω</td>
<td>R_4</td>
<td>50Ω</td>
<td></td>
</tr>
<tr>
<td>L_1</td>
<td>10μH</td>
<td>L_2</td>
<td>20μH</td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>0.5μH</td>
<td>M_2</td>
<td>0.5μH</td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>1nF</td>
<td>C_2</td>
<td>1nF</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Components Value for Condition 3

<table>
<thead>
<tr>
<th>Circuit Components Value</th>
<th>Components</th>
<th>Value</th>
<th>Components</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>50Ω</td>
<td>R_2</td>
<td>0.1Ω</td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>0.1Ω</td>
<td>R_4</td>
<td>50Ω</td>
<td></td>
</tr>
<tr>
<td>L_1</td>
<td>10μH</td>
<td>L_2</td>
<td>10μH</td>
<td></td>
</tr>
</tbody>
</table>

The way to plot is the same way as in condition 1. The plot result for condition 2 is shown in Figure 3.

Fig. 3. Plot for Condition 2

There are two different frequencies. The first resonance frequency \(\omega_{\text{res}} \) allows WPT to maximize the power. While another frequency is maximizing the efficiency which is the same as resonance frequency \(\omega_{\eta} \) in the condition 1.

Condition 2

In condition 2, In order to satisfy the high power urgency, resonance frequency \(\omega_{\text{res}} \) should be applied to the WPT system. But the efficiency of the system get lower. The resonance frequency which the efficiency is 56.2%, is:

\[
\omega_{\text{res}} = 7.07 \times 10^6 \text{ rad/s}
\]

When the WPT system urgency is having higher efficiency, \(\omega_{\eta} \) is more convenient. As an alternative choice, the WPT system urgency is both of power and efficiency. The intersection frequency \(\omega_{\text{int}} \), which the efficiency is 60%, should be adjusted at:

\[
\omega_{\text{int}} = 8 \times 10^6 \text{ rad/s}
\]

Condition 3

On the right side of \(\omega_{\eta} \), the efficiency curve is slighter than left side. Figure 4 means that small increase of the frequency, the efficiency decrease smaller than on the left side. In condition 3, both \(\omega_{\text{res}} \) and \(\omega_{\text{int}} \) change into other frequencies.
The value of both ω_{res} and ω_{int} in condition 3 are:

$$\omega_{\text{res}} = 1.37 \times 10^7 \text{ rad/s}$$

$$\omega_{\text{int}} = 1.31 \times 10^7 \text{ rad/s}$$

When the frequency of WPT is set on ω_{res}, the efficiency is 76.3%. When the frequency is set on ω_{int}, the efficiency is 80%.

It is easier to see the correlation of those three conditions at the same table as shown in Table 4. WPT should apply ω_{int} rather than ω_{res} to get more better efficiency.

<table>
<thead>
<tr>
<th>Condition</th>
<th>ω (rad/s)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ω_{res}</td>
<td>1.06$\times 10^7$</td>
</tr>
<tr>
<td>2</td>
<td>ω_{res}</td>
<td>7.07$\times 10^6$</td>
</tr>
<tr>
<td></td>
<td>ω_{int}</td>
<td>7.95$\times 10^6$</td>
</tr>
<tr>
<td>3</td>
<td>ω_{res}</td>
<td>1.37$\times 10^7$</td>
</tr>
<tr>
<td></td>
<td>ω_{int}</td>
<td>1.31$\times 10^7$</td>
</tr>
</tbody>
</table>

4. CONCLUSION

In order to get better efficiency, WPT should take care about how much the frequency is. There are two different frequencies. One is maximizing efficiency ω_{η} and another is maximizing power ω_{res}. Those three conditions can be inferred as:

1) The frequency in range $\omega_{\eta} \leq \omega \leq \omega_{\text{int}}$ gives higher efficiency.
2) The frequency in range $\omega_{\text{res}} \leq \omega \leq \omega_{\text{int}}$ gives higher power.
3) The intersection frequency ω_{int} gives the balance both power and efficiency.
4) Other frequency out of that range is not suggested, because the efficiency is getting more lower.

REFERENCES

3) Vladimir Kindl, Tomas Kavalir, Roman Pechanek, Karel Hruska, Basic Operating Characteristics of Wireless Power Transfer System for Small Portable Devices, 40th Annual Conference of The IEEE Industrial Electronics Society, Dallas, TX, pp. 3819-3823, 2014
腰用バンドが歩行動作及び閉眼片足立ち時間に与える影響に関する研究

田村 宏樹 a)・下宮園 翔吾 b)・有馬 和也 b)・川原 文哉 a)

A Study on the Influence of Lumbar Support on Walking Motion and Standing Time on One Leg with Eyes Closed

Hiroki TAMURA, Shogo SHIMOMIYAZONO, Kazuya ARIMA, Fumiya KAWAHARA

Abstract

In this paper, we show the evaluation of the walking speed, stride and standing time on one leg using RGB-D sensor. The biological motions can be calculated by using RGB-D sensor. From these biological motion data, our system are able to determine the sping angle of body and the center of gravity 1). Furthermore, our proposal system can be analyzed the walking motions 2). In this paper, experimental tasks are normal walking motion and standing time on one leg with eyes closed. We evaluated the walking speed and stride from normal walking motion. The standing time on one leg with eyes closed is evaluated by time. Especially, we examined the effectiveness between with and without lumbar support wrapped around the waist. From these experiments, we introduce the influence of lumbar support wrapped around the waist.

Keywords: RGB-D sensor, Lumbar Support, Walking Motion, Standing Time on One Leg with Eyes Closed

1. はじめに

歩行器障害に関してロコモティブシンドローム（以下、ロコモ）という概念がある。ロコモになる主な要因として筋力の低下、骨や関節の病気、パリパリ感覚の低下が挙げられ、それに伴い歩行が困難になったり、バランスが悪くなることで日常生活を介護者に頼ることになる。そのため、歩行動作を計測したり、バランスの評価を行ったりするための機器は既にあるが、一般的には大掛かりなシステムである。

著者らが既に報告している先行研究1)のシステムでは、RGB-D センサを用いて簡易にバイオロジカルモーション（体の関節対の3次元位置情報）を計測し、得られるデータから背骨の傾斜角度、身体の重心位置などを算出することが可能である。先行研究1)では、算出した背骨傾斜角度に対しては3次元動作分析装置 VICON の結果と、重心位置に対しては重心動揺の結果と比較し、低次の関係があることを示している。

本論文では、先行研究の結果を受け、腰用バンド（腰部分に着けるゴム状のバンド）を人に与える影響に関して検討を行う。検討対象として、通常歩行と閉眼片足立ちを対象とする。歩行動作は日常生活をおくうえで大変重要な動作である。閉眼片足立ちは、ロコモを判断、また転倒リスクを判断する上で重要な指標である。閉眼片足立ち時間とは、両手を腰にあて、両目をつぶり、左右どちらでも立ちやすい側の足で片足になり、計測を開始してから転倒がいずれ、足が床に触れるまでにかかる時間であり、静的バランス能力をチェックする代表的な方法である。本論文では、RGB-Dセンサを用いてバイオロジカルモーションを算出し、歩行動作と閉眼片足立ちの実験から得られる情報から、腰用バンドを着けているときと着けていないときの違いについて報告する。

2. 先行研究

先行研究1)の目的は、RGB-D センサを用いたモーションキャプチャシステムにより関節対の3次元の座標データから背骨傾斜角度、体の重心を算出し、バランスの評価をすることであった。RGB-D センサで取得する座標対を図1に示す。図1のマーカー座標から背骨の傾斜角度、身体の重心を算出することが可能である。背骨の傾斜角度は、股関節から首にかけてのマーカー座標から求めることができる。重心に関しては、マーカーの位置から人体を大きく関節ごとに頭、胸体、右脚、右腕、左脚、左腕、右手、左手の8つの分割し、頭8%、胸体46%、腰10.5%、脛6.5%、
腕6%とし、対象者の体重から身体の各部位の重さを計算し、それとマーカの位置座標から重心を求めている。

図1. RGB-Dセンサ（マイクロソフト社製キネクトセンサ）を用いて抽出される身体のマーカの位置。

2.1 先行研究の結果

先行研究では、歩行動作に関して、健康ボランティア（20代の健康な男子学生8名）を対象に歩行時の背骨傾斜角度に関して、腰用バンドの有無でどのような差が生じるかを検証している。RGB-Dセンサによる背骨傾斜角度と3次元動作分析装置VICONを用いて算出した背骨傾斜角度に関しては決定係数がR^2=0.63の相関があることにより、決定係数を事前に確認している。それらの情報を利用して、先行研究の腰用バンドの有無による検証結果を表1に整理する。背骨傾斜角度が18.5%改善し、t検定を行った結果、5%で有意差があることを確認している。

また、閉眼片足立ちに関しては、健康ボランティア（20代の健康な男子学生9名）を対象に60秒の閉眼片足立ち時の人の重心座標の重心総軌跡と重心の変化した軌跡の外周体積（x軸、y軸、z軸の最大値と最小値）を抽出し、腰用バンドの有無でどのような差が生じるかを検証している。重心動揺計では重心の軌跡は算出できない。これを事前に確認している。このことより、閉眼片足立ち時の重心の変化（静的バランス）は、腰用バンドにより低減できるかどうかに関して、個人差が大きいことを確認している。

3. 実験結果および考察

本論文では、著者らが提案している先行研究のシステムを用いて、歩行動作の解析を行う。先行研究では、RGB-Dセンサを用いて歩行動作からロコモを推定することができシステムである。ロコモを推定するために歩行動作から、歩幅（歩行開始時から2歩目と3歩目の平均値）、歩行速度（歩幅をかかった時間で割った結果）、膝角度を算出し、それらの情報を用いてロコモを推定している。本論文では、先行研究のシステムを用いて、歩行時の歩幅と歩行速度を得る。歩幅と歩行速度に関しては3次元動作分析装置VICONを真価として、誤差率5%以内での精度で計測が可能であることが事前に確認済みである。しかし、先行研究のシステムでは、RGB-Dセンサの設置位置の関係上、先行研究のように背骨傾斜角度を算出することはできない。また、閉眼片足立ちについて、本論文では単純に時間情報だけで評価するため、特にRGB-Dセンサを用いたシステムは使用しない。

3.1 歩行動作実験

本節では、歩行動作の実験結果について述べる。本実験は、60歳から75歳の15名の方を対象に歩行時の歩行速度度と歩幅に関して、腰用バンドの有無で差が生じるのか実験を行った。被験者は、家中で歩いているようにできだけ自然に歩行するように指示を行っている。歩行距離は3mである。また、数回練習をしのうえで計測を行っている。本実験は、宮崎大学工学部の倫理委員会承認済みの実験である。実験結果を表2に示す。図2より、歩幅は、腰用バンドの有無で全く違いがなく、歩行速度もほぼ同じ結果に整理する。背骨傾斜角度が18.5%改善し、t検定を行った結果、5%で有意差があることを確認している。
であった。このことから、腰用バンドは歩行時の歩幅と歩行速度には影響を与えないことがわかる。歩行速度 1.38[m/sec]は 40 代後半の歩行速度であり、今回の被験者の平均年齢が 67 歳であることから、被験者は年齢以上に健康な方であったと推測される。

先行研究 1) より歩行時の脊柱傾斜角度には影響するといえる。脊柱傾斜角度が大きいと腰部椎間板圧迫力が大きくなることがわかっており 3)，このことより、腰用バンドによって腰部に負担をかけない歩行が期待できる。

3.2 閉眼片足立ち実験

本節では、閉眼片足立ちの実験結果について述べる。本実験は、健康ボランティア（20 代の健康な男子学生 15 名）を対象とした。実験結果を図 3 に示す。図 3 より、腰用バンドありのほうが、53 秒閉眼片足立ち時間が長くなっていることがわかる。このことは静的バランスが良くなっていていることを示す。また、t 検定の結果、1%水準で有意差がある結果であった。15 名中、13 名が時間が延びた結果となった。20 代の平均時間が 70 秒 4) とされていることからも、腰用バンドなしの結果は適切であり、腰用バンドの効果が大きいことがわかる。先行研究 1) より、腰用バンドを着けることで個人差はあるものの、重心の変化が低減される傾向であったが、閉眼片足立ち時間では顕著に違いが生じる結果となった。

図 2. 通常歩行時の腰用バンドの有無による歩幅（上グラフ）と歩行速度（下グラフ）の比較。

: 60 歳から 75 歳の 15 名（平均年齢 67 歳）の平均値。歩幅は歩行開始時から 2 歩目と 3 歩目の平均であり、歩行速度は歩幅をかかった時間で割った結果である。t 検定の結果、有意差なし。

これらのことより、腰用バンドを着けることで閉眼片足立ち時間が延びることにより、日常生活での静的バランス（座位姿勢、立位姿勢を保つ能力）の改善が期待できる。

4. 結論

本論文では、腰痛予防などに用いられる腰用バンドが人の動作にどのような影響を与えるのか、通常歩行動作と閉眼片足立ち（静的バランス評価）の 2 つの動作を対象に検討を行った。その結果より、以下の 2 点がわたった。

1）歩行動作に関しては、腰用バンドを着けることで、背骨傾斜角度が小さくなる傾向があることが先行研究よりわかっていた。ただし、その傾向は歩行動作時の歩幅、歩行速度にまで影響しないことが本実験よりわかった。

2）閉眼片足立ちに関しては、重心の変化が腰用バンドを着けることで、個人差はあるものの、小さくなる傾向があることが先行研究よりわかった。本実験より、腰用バンドを着けることで閉眼片足立ち時間も延びることがわかった。

これらのことにより、腰用バンドを着けることで閉眼片足立ち時間が延びることより、日常生活での静的バランス（座位姿勢、立位姿勢を保つ能力）の改善が期待できる。また、先行研究 1) より、腰用バンドは歩行時の背骨傾斜角度を低減することができることより、腰部に負担をかけない歩行になる効果も期待できる。一般的に、腰用ベルトを装着することで骨盤が固定され、仙腸関節（仙骨と腸骨の間にある関節）の捻れが防止でき、また、負担を軽減する効果があると言われている。先行研究 1) の結果はこの効果を裏付ける根拠となる結果であるとも言える。ただし、先行研究 1) の結果および本論文の結果は、歩行動作以外では 20 代のみを対象にした実験結果であることから、信頼性を高めるためにより幅広い年代での計測が必要であり、それが今後の課題である。

図 2. 閉眼片足立ち時間の腰用バンドの有無による比較。

: 健康ボランティアである 20 代の健康な男子学生 15 名の平均値。t 検定の結果、1%水準で有意差あり。
参考文献

1) 下宮園翔吾, 有馬和也, 田村宏樹, 淡野公一,"RGB-D センサを用いたバランス評価に関する研究“，FIT2016（第15回情報科学技術フォーラム），J-054，2016。
2) 百瀬幸太, 帖佐悦男, 田村宏樹,"RGB-D センサを用いたロコモティブシンドロームの評価法に関する研究“，第26回日本運動器科学会，セッション2-9，2014。
3) 森尾明彦,"筋骨格系障害予防のための作業負担ソフト BlessPro ver. “，人間工学と産業保健のホームページ，2013。
 http://homepage2.nifty.com/aseo/blesspro.htm
4) 日本健康運動研究所,”健康づくりに役立つ運動“，日本医療・健康情報研究所のホームページ，2017。
 http://www.jhei.net/exer/measurement/me04.html
A Study on the Locomo Age Calculation Method using the Winner Node and the Locomotive Syndrome Estimating Method

Fumiya KAWAHARAd), Hiroki TAMURAb), Koichi TANNOe), Kurumi TSURUTAd), Tomoko SHIOMITSUe), Etsuo CHOSAf)

Abstract

Locomotive syndrome (abbr. locomo) means a reduced state of the human moving ability due to a failure of the human musculoskeletal system. The Ministry of Health, Labor and Welfare is aiming to increase the awareness of the people's locomo to 80\%, and interest in locomo has been increasing. In this paper, we newly propose Locomo age and we aimed to verify its effectiveness. The proposed system consists of the locomo estimation system of the previous research and the algorithm for calculating Locomo age, which is the proposed method in this paper. The concept of winner node was used for the calculation algorithm of Locomo age. By doing this, we thought that we can calculate the Locomo age that we can compare with our age. We report the results of applying this proposed method to a total of 194 subjects, 101 from under 65 years old and 93 from over 65 years old. Moreover, in the evaluation index of Locomo age, it turned out that there were subjects who had a difference between their movement function and the result of Locomo 25. Therefore, we select data by considering this result, report the result of estimating Locomo 25 from walking motion through multiple regression analysis and ANFIS.

Keywords: Kinect for Windows V2, Winner Node, Locomotive Syndrome, Multiple Regression Analysis, Adaptive Neuro Fuzzy Inference System

1. はじめに

近年の我が国は、総人口に占める高齢者人口の割合が平成28年度では27.3\%となっており、超高齢社会を迎えている1). この最大の要因は、死亡率の低下による平均寿命の延伸である。厚生労働省によると、平成25年の我が国の平均寿命は、男性が80.21歳、女性が86.61歳となっていている。これに対して、健康上の問題がなく日常生活を送れる状態を指す健康寿命は、男性が71.19歳、女性が74.21歳となっている2). 平均寿命と健康寿命の差は、日常生活に制限のある不健康な期間、つまり介護を必要とする期間となる。平均寿命の延伸に伴い、この期間の拡大が進んできること、および、介護の質の低下が著しい。よって、介護が必要になることが必要である。ここで、介護が必要になる原因を表1に示す3). この中で、骨折・転倒や関節疾患といった「運動器の障害」が全体の約2割を占めている。「運動器の障害」に関して、ロコモティブシンドローム（以降、ロコモ）という概念がある4). ロコモは運動器の障害により移動機能の低下した状態を意味しており、このロコモという概念を知らせる運動器の健康を意識し、自ら予防のための運動を行っていくことが健康寿命を延ばすのに必要になっている。このロコモという考え方は近時は様々なところで取り上げられ、研究なども行われている。

ロコモの診断方法はロコモ25、2ステップテスト、立ち上がりテストの3つがある。これら3つのテスト結果を相互判断することで、ロコモ度を判定することができる。ロコモ度はロコモの障害を3段階で評価したものである。しかし、ロコモの認知度は47.3\%、理解度は19.9\%と一般的に普及しているとはいかない数値である5). これより、ロコモ度という独自の評価指標は直感的でないことが伺える。また、3つの評価テストの内、2ステップテスト、立ち上がりテストは、介護が必要であること、被験者（特に高齢者）にとって身体的な負荷がかかることなどの問題点がある。そのため、より安全な計測方法であれば、被験者の負担を減らすことができ、計測結果がより直感的であれば、ロコモを知らない方でも理解しやすくなり、自分の運動
器の状態を意識する機会を与えることができると考えられる。そこで本論文では、被験者の身体的な負担にならない歩行動作を解析し、評価指標として身近である「年齢」に着目したロコモ年齢を新たに提案し、その算出、検討を行う。また、ロコモ年齢の評価に当たって、自身の移動機能とロコモ25の結果に差異がある被験者がいることがわかった。よって、ロコモ年齢の評価によるデータの選定を行い、ロコモ25を重回帰分析と機械学習の1種であるadaptive neuro-fuzzy inference system (ANFIS)を用いて推定した結果の検討も行う。

著者らの研究グループでは、ロコモと歩行動作の関係に着目して、調査を行っている。歩行動作をKinectセンサ（Kinect for Windows）のモーションキャプチャシステムを用いて解析し、取得される骨格位置情報から算出される膝関節角度などの値と、ロコモ25のアンケート結果との相関関係を調査している。また、別の先行研究ではKinect for Windows v2（以下Kinect v2）と3次元モーションキャプチャシステムを有するVICONとの比較を行うことで、取得される骨格位置情報から算出される膝角度、ストライド、歩行速度の精度を検証している。その結果、VICONの測定値を真値として、膝角度の誤差率は4.81%、ストライドの誤差率は4.82%、歩行速度の誤差率は2.42%の精度で取得できる可能性が示唆された。この先行研究のロコモ推定システムを用いて、本論文では歩行動作の解析を行う。

2. 先行研究

2.1 Kinect v2によるロコモ推定システム

先行研究ではKinectによるロコモ推定システムとKinect v2によるロコモ推定システムの比較を行っている。本節では、本論文で入力として扱う膝角度、ストライド、歩行速度の取得方法について説明する。また、先行研究でのKinect v2によるロコモ推定システムとVICONの比較の結果、膝角度の誤差率は4.81%、ストライドの誤差率は4.82%、歩行速度の誤差率は2.42%の精度で取得できる可能性が示唆された。

2.1.1 実験環境

先行研究の実験環境を図1に示す。また、図のように歩く方向とKinect v2の角度が45° なので、要素の取得に最も有効であったためである。
2.1.3 ストライド/脚の長さ
先行研究の結果、ストライドの算出方法について説明する。算出方法を図3に示す。Kinectセンサで骨格位置情報を取り得る範囲は限られているため、ストライドは歩行動作の中でも右脚の一歩目の動きから求められるようにしている。図6では1で歩行動作に入る前の直立時、2で右足が床から離れる瞬間、3で床から離れた右足が移動している瞬間、4で右足が床に着く瞬間を示している。ストライドは2から3まで、右足首のX座標の変位\(\Delta X\)を求める。歩行を行う前の直立時にKinectセンサから得られる右足首、右膝、右腕の骨格位置情報から、右腕から右膝までの長さ（\(\Delta h_k\)）、右腕から右足首までの長さ（\(\Delta L_a\)）を算出しこれの長さの和を足の長さ（\(\Delta L = \Delta h_k + \Delta L_a\)）として算出している。算出したストライドと脚の長さから比率（\(\Delta X/\Delta L\)）を求める。先行研究では、これを三次元の座標情報として取得して算出を行っている。

図3. ストライドの算出方法。

2.1.4 歩行速度
速度の算出方法を示す。まず、速度の算出においてはすでに求めているストライドの値を用いることにした。右脚一歩目のストライドは先に述べたような方法で算出を行う。速度の算出には距離と時間を必要とする。ストライドを距離として時間に換算する。算出した距離と時間から最短距離を1歩分で歩行動作に入ることを考慮した。速度の算出は、真の速度に対するマップを作成する。4で示した右足首X座標の変位を算出することで算出している。さらに、距離と時間を換算した時間と、ストライドから最終的に速度を求める。

図4. 右足首X座標の変位、X座標の変位量。

2.2 ステップテストと速度
歩行速度に関して、先行研究では、2ステップテストと歩行速度に関係性があるという報告がされている。対象者は運動機能に問題がないとされた平均年齢57.0±12.6歳の108名と平均年齢64.0±10.6歳の外来リハ療養者名で10m歩行速度と2ステップテスト相関関係を調査したところ、\(r=0.9\)の正の相関があるという結果が得られている（図5）。この先行研究により、歩行速度にとって2ステップテストの評価が可能であると考えられるため、本論文でも入力として歩行速度を用いることとした。

図5. 2ステップと歩行速度の関係。

3. 提案手法
3.1 ロコモ年齢算出アルゴリズム
最初に4つの入力に対するマップを作成する。今回は年齢と膝角度、年齢とストライド/脚の長さ、年齢と歩行速度の3つの2次元のマップを用意
した。このとき、それぞれの入力に対して、式(3)を用いて正規化を行う。

\[
\text{normalize} A_i = -\frac{a_i}{A_{\text{max}}}
\]

式(3)をそれぞれの入力に適用させる。式(3)中の\(A_i\)は\(i\)番目の正規化後の各入力、\(a_i\)は\(i\)番目の各入力、\(A_{\text{max}}\)は各入力の最大値である。

次にそれぞれのマップに対して素子を決定する。決定した結果を表2に示す。

表2. 各年代の入力の素子の値

<table>
<thead>
<tr>
<th>Each age</th>
<th>Knee angle</th>
<th>Stride/Leg length</th>
<th>Walking speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>59</td>
<td>2.09</td>
<td>1.2</td>
</tr>
<tr>
<td>30</td>
<td>57.7</td>
<td>1.91</td>
<td>1.17</td>
</tr>
<tr>
<td>40</td>
<td>56.3</td>
<td>1.9</td>
<td>1.14</td>
</tr>
<tr>
<td>50</td>
<td>53.1</td>
<td>1.89</td>
<td>1.07</td>
</tr>
<tr>
<td>60</td>
<td>52.4</td>
<td>1.88</td>
<td>1.0</td>
</tr>
<tr>
<td>70</td>
<td>49.2</td>
<td>1.81</td>
<td>0.97</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>1.22</td>
<td>0.73</td>
</tr>
</tbody>
</table>

決定方法として、10歳ごとに区切った入力層の平均をその年齢の素子とした。例として、年齢と膝角度のマップにおける20代の素子は、20〜29歳の被験者の膝角度の値を平均した値である。また、年齢と各入力に関して、膝角度、ストライド、歩行速度は年齢による下肢筋力の低下の点から、右肩下がりであることが望ましいので、年齢が下がるほど各入力の素子が低くなるように調整した。

各マップにおいて、1つの入力に対してそれぞれの素子のマージンを、式(4)を用いて算出する。

\[
\text{margin}_i = \sqrt{(Y - Y_i)^2 + 0.1 + (X - X_i)^2} \times 0.9
\]

式(4)中の\(Y\)は実年齢を示し、\(Y_i\)は\(i\)番目の値（年代）である。\(X\)は正規化された入力であり、\(X_i\)は\(i\)番目の値（年代）の値である。また、係数0.1、0.9は事前実験より、最も良い結果を得た係数である。マージンの算出後、最小値をとった素子を選択する。

選択した素子を勝利素子と呼ぶ。勝利素子により、各マップにおけるそれぞれの入力の年代スコアを決定する。年代スコアには、各年代のロコモ年齢の平均値を用いる。各年代と年代スコアの対応表を表3に示す。

表3. 各年代の年代スコアの関係

<table>
<thead>
<tr>
<th>By age</th>
<th>Age score</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>1.6</td>
</tr>
<tr>
<td>40</td>
<td>3.0</td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td>60</td>
<td>5.3</td>
</tr>
<tr>
<td>70</td>
<td>9.6</td>
</tr>
<tr>
<td>80</td>
<td>17.1</td>
</tr>
<tr>
<td>90</td>
<td>37.8</td>
</tr>
</tbody>
</table>

各入力で求めた年代スコアを平均し、最終スコアを式(5)から算出する。

\[
\text{Score}_i = 0.17 \times \text{Score}_{\text{kneeangle}} + 0.15 \times \text{Score}_{\text{stride/leg length}} + 0.75 \times \text{Score}_{\text{walking speed}} - 0.05
\]

そして、最終スコアに応じてロコモ年齢を算出する。ロコモ年齢の算出式を表4に示す。

表4. 最終スコアとロコモ年齢の算出式の関係

<table>
<thead>
<tr>
<th>Range of final score</th>
<th>Calculation formula of Locomo age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \leq \text{Final score}<1.6</td>
<td>\text{Locomo age} = \frac{\text{Final score}}{1.6} \times 10 + 20</td>
</tr>
<tr>
<td>1.6 \leq \text{Final score}<3.0</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 1.6}{1.4} \times 10 + 30</td>
</tr>
<tr>
<td>3.0 \leq \text{Final score}<4.0</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 3.0}{1.0} \times 10 + 40</td>
</tr>
<tr>
<td>4.0 \leq \text{Final score}<5.3</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 4.0}{1.3} \times 10 + 50</td>
</tr>
<tr>
<td>5.3 \leq \text{Final score}<9.6</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 5.3}{4.3} \times 10 + 60</td>
</tr>
<tr>
<td>9.6 \leq \text{Final score}<17.1</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 9.6}{7.5} \times 10 + 70</td>
</tr>
<tr>
<td>17.1 \leq \text{Final score}<37.8</td>
<td>\text{Locomo age} = \frac{\text{Final score} - 17.1}{20.7} \times 10 + 80</td>
</tr>
</tbody>
</table>

ロコモ年齢は、各素子間のスコアの差が不均一なことを考慮して、最終スコアがどの範囲にあるかで算出式を場合分けし、算出した。
3.2 ロコモ年齢の評価指標

ロコモ年齢の評価にあたって、その性能を指すために正解のパターンを以下の2つとした。
1. 本人のロコモ25の結果が本人の年代スコアより高く、かつ、ロコモ年齢が実年齢よりも高い。
2. 本人のロコモ25の結果が本人の年代スコアより低く、かつ、ロコモ年齢が実年齢よりも低い。

上記のように正解パターンを設けた理由は、被験者にとって、自分の年齢が平均値と比べて上か下かという基準が単純で直感的だと考えたためである。ロコモ年齢の評価に関して、図6のような散布図を作成し、図のように8つの領域に分ける。この領域の内、領域IとIIが上記の2つのパターンに当てはまる。また、図6の縦軸を横軸の値が小さいと識別が難しくなることから、ロコモ年齢 - 実年齢の値（縦軸）が3.4はもとより、ロコモ25 - 年代スコア（横軸）が4のとき、この範囲内を正解とみなすこととした。以上を考慮して、式(6)により識別率を算出した。

\[
\text{識別率} = \frac{\text{(領域I, II, III, IVにおける被験者数 + \text{正解とみなす範囲内の被験者数)}}}{\text{全被験者数} \times 100}
\]

式(6)

また、図6における領域IとIII以外の被験者は自身の移動機能とロコモ25の結果に差異があると判断し、これらのデータを除外することでデータの選定を行った。そして、重回帰分析とANFISを用いて、データの選定前と選定後のロコモ25の推定を行い、これらの比較を行った。また、重回帰分析とANFISの入力は膝角度、ストライド/歩の長さ、歩行速度である。ANFISにおいては、クロスバリデーション法を用いており、1歩行目を訓練データ、2、3歩行目をテストデータとして解析を行った。

4. 実験結果

本章では、第3章で説明を行ったロコモ年齢算出についての評価・検討を行う。対象被験者は宮崎市公民館、千葉県、宮崎市保健所で行われた歩行計測会に参加した65歳未満101名、65歳以上93名、計194名である。医の倫理委員会承認済の実験プロトコルに従って実施している。

4.1 ロコモ年齢の実験結果

図6で述べたロコモ年齢の評価指標に関する散布図を図7に示す。図7の横軸は実際のロコモ25のアンケート結果から年代スコアを引いた値であり、縦軸は提案手法によって算出したロコモ年齢から実年齢を引いた値である。また、図7における被験者がその領域でのどの程度の割合を占めているのかを、領域別、年齢別に示したものである。図8に示す。また、表5に対象被験者ごとのロコモ年齢の識別率を示す。

図7. 評価指標に関する散布図。
図8より、領域Ⅰでは、20代に被験者が50.0％、領域Ⅲでは70、80代の被験者が66.0％、67.9％と、他の年齢層と比較して多くの割合を占めていことがある。また、表5より、全被験者の識別率は66.5％であったが、これと比較して、低年齢層は識別率が高く、高年齢層は低いという結果になった。

4.2 データの選定を考慮したロコモ25の推定結果

本節では、4.1章で述べたロコモ年齢の評価指標を用いて、データの選定を考慮したロコモ25の推定結果について説明する。図9～16に、データの選定前と選定後の、重回帰分析とANFISを用いたロコモ25の推定結果を示す。解析には65歳未満と65歳以上で対象被験者を分割した。データ選定後の65歳未満の被験者数は70名、65歳以上の被験者数は69名であった。また、図9～16の横軸はロコモ25の結果、縦軸は重回帰分析とANFISの推定結果である。

データ選定前と選定後を比較すると、の観点からデータの選定前よりも選定後のほうが高い推定結果を得ていることがわかる。この原因として、ロコモ25スコアの値とロコモ年齢-実年齢の値が一致しているか、していないかによることに関わっていると考えられる。また、年齢層と年齢層に分割してロコモ年齢の識別率の算出を行ったところ、低年齢層に比べ高年齢層の識別率が高かった。次に、4.2章において、ロコモ年齢の評価指標によるデータの選定に関する検討を行った。結果として、重回帰分析とANFISの2つの推定方法において、データの選定前よりも選定後のほうがの値が高いという結果を得ることができた。よって、ロコモ年齢の評価指標によるデータの選定方法は有用であると考えられる。

以上の結果より、本提案手法は、被験者に身体的な負担がかからない点、低年齢層より高年齢層に割り高的な識別率が得られる点、ロコモ年齢の算出が高齢者に向けた有用なシステムであるといえる。また、ロコモ年齢の算出方法は、歩行時の歩幅、歩行速度、膝角度の値がユーザの年代の平均値より悪い結果であれば、ロコモ年齢は高くなり、平均値より良い結果であれば低くなるため、自己管理に用いることができる。そして、ロコモ年齢の評価指標を用いたデータの選定を行うことで、より精度の高いロコモ25の推定が可能であると期待される。

5. おわりに

本論文では、Kinect v2による歩行動作の解析を行い、その結果から、ロコモ年齢の算出及び検討と、ロコモ年齢の評価指標によるデータの選定を考慮したロコモ25の推定を目的として行った。まず、4.1章において、本提案手法を用いたロコモ年齢の識別率の結果及び検討を行った。その結果、全被験者を対象とすると66.5％という識別率でロコモ年齢を識別できることができた。また、年齢別にみると、20、70、80歳代のロコモ年齢の識別率は特に高く、30～60歳代のロコモ年齢の識別率は識別率が低いことがわかった。この原因として、ロコモ25スコアの値とロコモ年齢-実年齢の値が一致しているか、していないかによることに関わっていると考えられる。また、年齢層と年齢層に分割してロコモ年齢の識別率の算出を行ったところ、低年齢層に比べ高年齢層の識別率が高かった。次に、4.2章において、ロコモ年齢の評価指標によるデータの選定方法は有用であると考えられる。

以上より、本提案手法は、被験者に身体的な負担がかからない点、低年齢層より高年齢層のほうが識別率が高い点を考慮すると、ロコモ年齢の算出は高齢者に向けて有用なシステムであるといえる。また、ロコモ年齢の算出方法は、歩行時の歩幅、歩行速度、膝角度の値がユーザの年代の平均値より悪い結果であれば、ロコモ年齢は高くなり、平均値より良い結果であれば低くなるため、自己管理に用いることができる。そして、ロコモ年齢の評価指標を用いたデータの選定を行うことで、より精度の高いロコモ25の推定が可能であると期待される。
対象被験者ごとの識別率

図8より、領域Ⅰでは、20代に被験者が50.0\%、領域Ⅲでは70\%、80代の被験者が66.0\%と、他の年齢層と比較して多くの割合を占めていることがわかる。また、表5より、全被験者の識別率は66.5\%であったが、これと比較して、低年齢層は識別率が低く、高年齢層は高いという結果になった。

4.2 データの選定を考慮したロコモの推定結果

本節では、4.1章で述べたロコモ年齢の評価指標を用いて、データの選定を考慮したロコモの推定結果について説明する。図9～16に、データの選定前と選定後の、重回帰分析とANFISを用いたロコモの推定結果を示す。また、解析には65歳未満と65歳以上で対象被験者を分割した。データ選定後の65歳未満の被験者数は70名、65歳以上の被験者数は69名であった。また、図9～16の横軸はロコモの結果、縦軸は重回帰分析とANFISの推定結果である。

データ選定前と選定後を比較すると、R^2の観点からデータの選定前よりも選定後のほうが高い推定結果を得ていることがわかる。この原因として、ロコモの結果が低く、推定値が高い被験者や、ロコモの結果が高く、推定値が低い被験者といった、自身の移動機能とロコモの結果に差異がある被験者が、ロコモ年齢の評価指標によって除外されたためであると考えられる。その結果、重回帰分析とANFISの推定結果において、それらの推定値が近似直線に近づいたことでR^2の値が向上したと考えられる。また、重回帰分析とANFISの推定値において、同一被験者であるにも関わらず、2つの推定値が大きく離れてしまう現象を確認した。これを防ぐために2つの推定値の差が7以上であれば、2つの推定値の平均値を出力、7未満であればANFISで得られた推定値を出力するようにした。それらの結果を図17～20に示す。

図17～20も図9～16と同様に、R^2の観点からデータの選定前よりも選定後のほうが高い推定結果を得ていることがわかる。しかし、図15と図19と比較すると、R^2の値は図20のほうが下がっておりますがほぼ同等、図16と図20を比較すると、R^2の値は同等となっている。また、近似直線の傾きに関しても、2つの推定方法を用いた解析結果のほうが低くなっている。この原因として、重回帰分析とANFISの推定値の差が大きく離れている被験者が少なかったことや、重回帰分析とANFISの推定値の平均値を出力することで、ANFISを用いた推定値より出力値が低くなったことによる影響が考えられる。

以上を踏まえて、本論文で提案したロコモ年齢の評価指標を用いたデータの選定方法は、R^2の比較結果より有用であるといえる。
参考文献

1) 統計局ホームページ/統計トピックスNo.72 統計からみた我が国の高齢者（65歳以上）、「敬老の日」にちなんだり高齢者の人口、http://www.stat.go.jp/data/topics/topi971.htm、アクセス日（2017年1月17日）。

2) 健康日本21(第二次)/厚生労働省、http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21/kenkounippon21/data01.html、アクセス日（2017年1月17日）。

3) 平成22年国民生活基礎調査の概況/厚生労働省、http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa10/4-2.html、アクセス日（2017年1月17日）。

4) 新概念「ロコモ（運動器症候群）」/公益社団法人日本整形外科学会、http://www.joa.or.jp/jp/public/locomo/、アクセス日（2017年1月17日）。

5) T. Taka4. ロコモ認知度/ロコモについて/NPO法人全国ストップ・ザ・ロコモ協議会、http://sloc.or.jp/?page_id=2227、アクセス日（2017年1月17日）。

6) 百瀬幸太、村永信吾、田村宏樹、"RGB-Dセンサを用いたロコモティブシンドロームの評価方法に関する研究"、第26回日本運動器科学会、セッション2-9、2014年7月5日。

7) 百瀬幸太、"RGB-Dセンサを用いたロコモティブシンドローム評価システムに関する研究"、宮崎大学大学院工学研究科電気電子工学専攻修士論文発表会、2016年2月。

9) 村永信吾、平野清孝、"2ステップテストを用いた簡便な歩行能力推定法の開発"、昭和医会誌、63（3）、pp.301-308、2003。
火花点火機関燃焼室における熱伝達率算出式の検討（燃焼室内主流が無視できる場合）

中川 隆貴 a)・長瀬 慶紀 b)・友松 重樹 c)・木村 正寿 d)

Study of Convective Heat Transfer on the Combustion Chamber Wall Surface of a Gasoline Engine
(Investigation of Negligible Mainstream in a Combustion Chamber)

Hirosi NAKAGAWA, Yoshinori NAGASE, Shigeki TOMOMATSU, Masatoshi KIMURA

Abstract

In order to solve an environmental problem, it is necessary to improve the thermal efficiency of an internal combustion engine. There is a heat loss, which amounts to about 30% of thermal energy occurred in a combustion chamber of an engine. To reduce the heat loss, it is required to understand the heat transfer on a combustion chamber wall surface from combustion gas. Therefore, it is necessary to calculate the heat transfer coefficient between combustion gas and combustion chamber wall surface. In past studies, the correlation between the gas flow and the heat transfer coefficient was indicated in the high velocity range, through it is not possible to be applied in the low velocity range. In order to solve this problem, this laboratory developed an empirical formula between the Fourier number which is a dimensionless number of a time and the Nusselt number which is the dimensionless number of heat transfer coefficient. In this study, the heat flux on a combustion chamber wall of an S.I. engine was measured using the heat flux probe in negligible gas flow conditions, and we investigated the validity of the developed formula. As a result, it was found that the developed heat transfer calculation formula is more accurate than Woschni's equation, and even if the turbulence intensity differs, the decline tendency of the heat transfer coefficient in the low flow velocity region is reflected.

Keywords: S.I. engine, Combustion chamber, Heat flux, Heat transfer coefficient, Fourier number

1. はじめに

內閣府の発表では、25年以上にわたって世界自動車台数は増加しており、その7割程度は内燃機関を使用してしており、世界の石油エネルギー約3割を消費しているという見通しが立っている。また、先進国ではCO2規制や排出ガス規制強化、再生可能エネルギーの導入を行い、石油エネルギーの消費に伴う資源枯渇、地球温暖化、大気汚染の問題解を図っている。我が国では、石油エネルギーの消費に伴う資源枯渇、地球温暖化、大気汚染の問題解決を図っている。内閣府の発表では、25年以上にわたって世界自動車台数は増加しており、その7割程度は内燃機関を使用しており、世界の石油エネルギー約3割を消費しているという見通しが立っている。また、先進国ではCO2規制や排出ガス規制強化、再生可能エネルギーの導入を行い、石油エネルギーの消費に伴う資源枯渇、地球温暖化、大気汚染の問題解を図っている。
フーリエ数 F_o で表し、熱伝達率の無次元数である Nu 数との関係を求めることにより、流速の適用範囲の広い熱伝達率算出のために無次元数整理式の導出を行っていくことを目的とした。

2. 熱流束計測実験

図1に示すように、熱流束計の選別実験では吸気バルブに覆い（シュラウド）を取り付け、流れを接線方向に向いた場合で実験を行った。次に、低流速域での熱伝達率を求めするためにシュラウドを中心に向けた熱流束計測実験を行った。さらに、低流速域での熱伝達率を求めするためにシュラウド無しの条件でも実験を行った。この場合はシュラウドが付いていない吸気バルブを用いた。以下では、シュラウドバルブの付いていない吸気バルブをノーマルバルブと呼ぶこととする。

2.1 供試機関

エンジンの燃焼室壁面での熱流束計測を行うため供試機関を用いた。本研究で用いた供試機関は、ガソリンを燃料とする4サイクル OHV 型単気筒（型式：TRE-1）である。全体図を図1に、主要諸元を表1に示す。熱流束計測点は図2に示しており、シリンダヘッド区に4箇所、シリンダライナ区に4箇所、ピストンヘッド区に5箇所の計11点に熱流束計の取り付け可能とされている。また、吸排気弁は2バルブ方式となっている。吸気バルブには気流を特定の方向へ導くシュラウドが付いている。この吸気バルブは交換可能であり、シュラウドの向きを変えることができる。

2.2 熱流束計

2.2.1 熱流束計の構造 熱流束計の母材は、φ3.2mm × 10.0mm のコンスタンタン製円柱である。表面接点用にφ0.7mm の貫通穴が設けられている。この母材の片面には内接点用のφ1.4mm、5.0mm の穴が設けており、同一面上にアース用のφ0.7mm、3.0mm の穴が設けてある。アース線にはコンスタンタン素線、表面接点と内接点には銅素線を使用している。内接点は点溶接で接合されており、表面接点はめっきによって約10μm の銅薄膜により形成されている。熱流束計の概略図を図2に示す。

2.2.2 熱流束計の測定原理 製作した流束計では表面接点、内接点の2組の熱電対が形成されている。熱電対は異なる材料の2本の金属線を接続して1つの回路を作り、2つの接点に温度差を与えると熱起電力が発生する現象を利用したものである。この現象をゼーベック効果という。また、作り出された回路の片方を開放すると、温度を電圧として検出することができる。用いた熱電対は、銅とコンスタンタンの2種類の異種金属で構成されているT型熱電対である。発生する熱起電力から温度変化を求める。また、表面接点、内接点それぞれの温度差からの平
実験

実験を求めるためにシュラウドを中心に向けた熱流束計測を用いた。次に、低流速域での熱伝達率を求めた。さらに、シュラウドを取り付けた流れを接線方向に計測した。熱伝達率算出のための無次元数整理式の導出を行った。特にシュラウドバルブの付いていない吸気バルブを用いた。これにより、流速の適用範囲の広い熱伝達率算出が可能である。

2.2.3 熱流束計の選別

使用する熱流束計は内製のため個体差が生じる。そのため、理論空燃比、1000rpmの実験条件で個別にファイリング時の熱流束を計測し、熱流束波形から偏りが少ないものを選別した。選別を行う際には、過去の実験において計測点の中で燃焼が一番安定する図3のL4で計測を行った。2015年度は96本の熱流束計を内製し、その中から選別作業を行った。計測した熱流束波形から、目で波形に異常があるものを12本を除き、選別プログラムにかけた。表1に示すように①熱流束波形の最高値の位置、②平均値、③振幅値、④最大値、⑤上死点前30度の値、⑥上死点後30度の値、⑦上死点後60度の値、⑧内接点電圧、⑨ノイズの9箇所で選別を行った。選別箇所の標準偏差に任意の係数を乗じることで、ある範囲において波形が一定と同等のものを選んだ。選別された熱流束計は計47本であった。選別された熱流束計の熱流束波形を図4に示す。

![選別された熱流束計の熱流束波形](image)

2.3 熱伝達率の算出方法

シリンダ内壁面温度については熱流束計から得られる表面接点温度を用いている。また、燃焼ガス温度計測はシリンダ内の圧力データから状態方程式を用いて、シリンダ内温度が一様と仮定して算出した。この際、燃焼ガスの熱物性値は空気に用いた。热伝達率の算出区間は主たる熱伝達が行われる火炎が壁面に到達してからその後の膨張行程とした。瞬時熱流束を$q(\theta)$とすると、燃焼ガスとシリンダ壁面における熱伝達を表す式式(1)のようになる。式(1)から熱伝達率を表す式(2)が導かれる。

$$q(\theta) = \alpha(T_s - T_w)$$

$$\alpha = \frac{q(\theta)}{T_g - T_w}$$

ただし、α：熱伝達率、T_s：燃焼ガス温度、T_w：シリンダ壁面温度とする。

3. 供試機関での実験

3.1 実験方法および実験条件

選別された熱流束計を図3の計測位置へ取り付ける。実験条件を揃えるために、気温、湿度、大気圧、機関の回転数から燃料の噴射量を求める。駆動運転により喷射量検定を行う。デジタルボルトメータ上で内接点電圧のドリフトが見られなくなるまで着火機関を行う。吸入空気温度、油温、水温が実験条件で安定している事を確認し、各計測点における内接点電圧をデジタルボルトメータで

<table>
<thead>
<tr>
<th>Criterion item</th>
<th>Coefficient</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value point [deg.]</td>
<td>±1.5</td>
<td>3.329</td>
</tr>
<tr>
<td>Average value [MW/m²]</td>
<td>±1.5</td>
<td>0.0242</td>
</tr>
<tr>
<td>Maximum difference [MW/m²]</td>
<td>±1.5</td>
<td>0.263</td>
</tr>
<tr>
<td>Maximum value [MW/m²]</td>
<td>±1.5</td>
<td>0.262</td>
</tr>
<tr>
<td>Value at BTDC30° [MW/m²]</td>
<td>±2.0</td>
<td>0.222</td>
</tr>
<tr>
<td>Value at ATDC30° [MW/m²]</td>
<td>±1.5</td>
<td>0.228</td>
</tr>
<tr>
<td>Value at ATDC60° [MW/m²]</td>
<td>±1.5</td>
<td>0.128</td>
</tr>
<tr>
<td>Noise [mV]</td>
<td>±2.0</td>
<td>0.0681</td>
</tr>
<tr>
<td>Inner junction voltage [mV]</td>
<td>±1.5</td>
<td>0.410</td>
</tr>
</tbody>
</table>

![熱流束計の取り付け位置](image)
表示し記録する。表面接点電圧は、\textit{BTDC}から計測され、A/D変換器を介し、PCに保存される。100サイクル分計測され、サンプリング数は2048である。回転数を、900、1000、1100rpmと変化させて計測を行った。それぞれの回転数でのサンプリング数を合わせるため、それぞれのサンプリング間隔を67μs、60μs、55μsとした。また、AFR20において1100rpmの条件では回転数が安定しなかったため計測を行わなかった。

AFR15およびAFR20においてのノーマルバルブでの熱流束計測実験条件およびAFR15・シュラウドを中心向きに取り付けた場合の熱流束計測実験条件を表3に示す。

<table>
<thead>
<tr>
<th>Valve</th>
<th>Normal valve</th>
<th>Shroud 120°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine speed</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>Charging efficiency [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air fuel ratio</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Ignition timing [deg. BTDC]</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>Water temperature [℃]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil temperature [℃]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge temperature [℃]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 実験結果および考察
熱流束波形の傾向から、ノーマルバルブで回転数を変えた場合とシュラウドを中心に向けた場合の熱の逃げ方が得られた。実験で得られた熱流束波形を図4に示す。

表3 熱流束計測実験条件。

(1) 熱流束波形 図4での熱流束波形の比較から、計測部ごとの傾向は、ピストン部・ライナ部の熱流束が高いことがわかった。ピストン部は、点火位置に近く、温度が急激に上昇し温度変化が大きいため、熱流束が高くなっ

図4. 熱流束波形の比較。

図5. AFR15熱発生率の比較。

(2) 熱発生率 熱流束波形の傾向から、計測部ごとの傾向は、ピストン部・ライナ部の熱流束が高いことがわかった。ピストン部は、点火位置に近く、温度が急激に上昇し温度変化が大きいため、熱流束が高くなっ

図5. AFR15熱発生率の比較。
バルブを中心に向けた場合は、ピストン部において気流が向かう方向での計測位置の熱流束がノーマルバルブの場合より高くなることがわたった。

(2) 熱発生率 熱発生率により燃焼状態を確認した。図5の熱発生率の比較から、シュラウドバルブを中心に向けた場合では点火時期がノーマルバルブの場合より遅いがノーマルバルブの条件より早く燃焼が終了しており燃焼時間が短くなっていることわかる。これは、シュラウドバルブを中心に向けることにより点火位置付近での乱れ強さが大きくなく燃焼が促進されたためと考えられた。また、回転数が高くなるにつれて燃焼区間が短いこともわかった。これは、回転数が高くなるほどシリンダ内での乱れ強さが大きくなることを表している。

3.3 無次元数整理
従来の研究では、熱伝達率の無次元数 Nu 数とシリンダ内流れの無次元数 Re 数を用いた整理式の導出を行ってきた。しかし、低流速域での適用ができない。そのため、Re 数に代わり点火後の燃焼時間数を無次元数 Fo 数で用い整理を行った。また、導出した熱伝達率算出式を比較を行うために、熱伝達率算出に一般的に用いられるWoschniの式を用いた。

3.3.1 無次元数整理式の導出 適用範囲を広げるためにも過去のデータを加え無次元数整理を試みた。また、用いた過去のデータでは吸気バルブに取り付けられたシュラウドが45°から240°においてシリンダの接線方向へガス流が発生するように設定している。整理式に用いた過去の実験条件を表4に示す。無次元数整理式において、Otto電着30°以降燃焼が終了すると仮定し、熱の逃げが収束するATD120°まで燃焼ガスから燃焼室壁面への熱伝達率を用いている。Nu数とFo 数の関係を図5に示し、両対数をとって直線近似して得られた関係式を無次元数整理式とした。Nu数とFo数はそれぞれ式(1)、式(2)に示す。無次元数整理式を式(5)に示し、式(5)を展開し得られた熱伝達率算出式を式(6)に示す。Woschniの式3)は式(7)に示す。

\[Nu = \frac{aD}{\lambda} \]
(3)

\[Nu = 0.78 F_0^{-0.57} \]
(4)

ただし、
\[a : \text{平均熱伝達率} \quad D : \text{シリンダ直径} \quad \lambda : \text{熱拡散率} \quad a : \text{熱拡散率} \quad m^2/s \]
\[r : \text{点火後の燃焼時間} \quad \text{s} \]

\[Nu = 0.78 F_0^{-0.57} \]
(5)

\[a = 0.78 \frac{\lambda}{D} \times (\frac{a}{\lambda})^{-0.57} \]
(6)

\[\alpha_w = 12.3 D^{-0.214} (C_m^* p)0.786 T^{-0.525} \]
(7)

ただし、
\[\alpha : \text{平均熱伝達率} \quad D : \text{シリンダ直径} \quad C_m : \text{平均ピストン速度} \quad m/s \quad p : \text{シリンダ内圧力} \quad \text{Pa} \quad T : \text{ガス温度} \quad \text{K} \]

表4. 整理式に加えたデータの実験条件。
<table>
<thead>
<tr>
<th>Engine speed</th>
<th>1000rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging efficiency</td>
<td>70%</td>
</tr>
<tr>
<td>Shroud angle</td>
<td>240° 20° 180° 120° 45°</td>
</tr>
<tr>
<td>Air fuel ratio</td>
<td>15 20 15 20 15 20 15</td>
</tr>
<tr>
<td>I.G timing [BTDC]</td>
<td>20° 30° 20° 28° 19° 31° 25°</td>
</tr>
</tbody>
</table>

表5. 計測値からの平均誤差率の比較。

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th>Eq. (6)</th>
<th>Eq. (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR15 900rpm normal valve</td>
<td>21.5</td>
<td>17.0</td>
</tr>
<tr>
<td>AFR15 1000rpm normal valve</td>
<td>20.8</td>
<td>37.5</td>
</tr>
<tr>
<td>AFR15 1100rpm normal valve</td>
<td>21.4</td>
<td>40.7</td>
</tr>
<tr>
<td>AFR20 900rpm normal valve</td>
<td>14.2</td>
<td>8.3</td>
</tr>
<tr>
<td>AFR20 1000rpm normal valve</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>AFR15 1000rpm With shroud (120°)</td>
<td>11.9</td>
<td>24.0</td>
</tr>
</tbody>
</table>

3.3.2 熱伝達率算出式の評価 式(6)で求めた熱伝達率について、計測値、Woschniの式3)で比較を行った。表5に膨張行程において計測値からの平均誤差率を示し、図7に熱伝達率の減衰傾向の比較を示す。シュラウドを中
心に向けた場合とシュラウドを付けていない場合、回転数が異なる場合の条件では、低流速域であるが乱れ強さが異なる。式(6)で熱伝達率算出を行った結果、全体的にWoschniの式よりも精度も良く、また熱伝達率の減衰傾向も捉えていたため、乱れ強さが異なっていても、Fo数を用いることにより低流速域での熱伝達率算出を行えることがわかった。

4. まとめ

主流が無視できるシュラウドが無い条件とシュラウドを中心に向けた条件で熱流束計測実験を行い、Fo数を用いて低流速域でも適用できる熱伝達率算出のための無次元数整理式の導出を行った結果、以下の結論を得た。

1) AFR15では、900rpm、1000rpm、1100rpm3種類の異なる回転数、シュラウドを中心に向けた場合で瞬時熱流束計測を行った。また、AFR20では900rpm、1000rpmで瞬時熱流束計測を行った。900rpmの条件では11点で全点同時計測を行うことができた。それ以外の条件では10点で同時計測を行うことができた。燃料室壁面全体の熱伝達率算出のために、無次元数であるNu数とFo数を用いて、整理式

\[Nu = 0.78Fe^{-0.57} \]

を導出した。

2) シュラウドを中心に向けた場合とシュラウドを付けていない場合の条件では、どちらも低流速域であるが、乱れ強さが異なる。導出した式で熱伝達率算出を行った結果、全体的にWoschniの式よりも精度も良く、また熱伝達率の減衰傾向も捉えていたため、乱れ強さが異なっていても、低流速域での熱伝達率算出を行ることがわかった。また、無次元数整理式において

\[Nu = C \cdot Fe^{-\alpha} \]

の形で表すことができることがわかった。式の係数、指数に関しては、計測点数により変動することが予測されるため後、全点同時計測を行っていく必要がある。

参考文献

1) http://www8.cao.go.jp/cstp/gaiyo/sip/sympo1412/subject/subject_01_02.html（参照日2015年12月30日）
2) 木頭俊介、水素火炎ジェット点火法における燃焼特性および燃焼制御に関する研究、岐阜大学機関リポジトリ、博士（工学）第73号、2014。
4) 中塚健人、宮崎大学大学院工学研究科機械システム工学専攻、平成21年度修士論文。
5) 大屋雅寛、筑井孝志、宮崎大学大学院工学部機械システム学科、平成21年度卒業論文。
6) 日本機械学会編流体の熱物性値集 日本機械学会 pp.187-403, p524.
7) 長瀬慶紀、田坂英紀、火花点火機能における熱流束計測の精度向上、日本機械学会論文集（B編）、73巻732号、2007年、pp.1753-1758。
電磁力加振方式を採用した磁気浮上型攪拌翼を有する
振動型ミキサーの開発

臼山 智洋 a)・岡部 匡 b)・濱畑 貴之 c)・池田 尚史 a)・加藤 準人 a)

Development of Vibratory Mixer Using Magnetically Levitated Fin
Excited by Electromagnetic Force

Tomohiro USUYAMA, Tadashi OKABE, Takayuki HAMAHATA,
Naofumi IKEDA, Hayato KATO

Abstract

In order to improve the efficiency of mixing process, the vibratory mixer using magnetically levitated fin is developed. The stirring fin of this mixer is levitated with the magnetic force enhanced by Halbach array in stirring vessel, and excited from outside stirring vessel by periodically changing electromagnetic field. The electromagnetic field is generated by a coil installed outside the stirring vessel. By adopting this exciting system, mixed liquid in the stirring vessel can be isolated from external environment, and then contamination into a mixed liquid can be prevented completely. In order to investigate vibration characteristics of the stirring fin, a prototype of this mixer is manufactured and experiments are performed. Experiments are executed on condition that stirring vessel is filled with water. Frequency response of peak-to-peak (p-p) amplitude and waveform of stirring fin are shown. The developed vibratory mixer of electromagnetic type can achieve competent performance for mixing, i.e., the resonance frequency is 12.9Hz and p-p amplitude of the stirring fin is 7.50mm. From the results of the experiments, effectiveness of the developed vibratory is confirmed.

Keywords: Nonlinear vibration, Vibratory mixer, Magnetically levitated Fin, Electromagnetic force
2. 電磁加振式振動型混合装置の構造

2.1 基本構造

本研究で製作した電磁加振式振動型混合装置の全体図と概略図をそれぞれ図1、図2に示す。本混合装置は、攪拌槽、攪拌翼、攪拌翼加振用コイル（以後、コイルと呼ぶ）から構成される。本混合装置では、攪拌槽内で永久磁石の磁気力によって磁気浮上する磁気浮上攪拌翼に対し、攪拌槽外部に設置したコイルによって発生する交流磁場を利用して加振する。この攪拌翼の往復運動を利用して液体と液体、あるいは液体と粉体の混合処理を行う。

2.2 攪拌槽

本混合装置の攪拌槽は、内径44mm、高さ160mmの円筒型攪拌槽（アクリル製）である。攪拌翼はこの中を上下方向に往復運動する。図3に、本研究で使用した攪拌翼を示す。この攪拌翼は、攪拌プレート、中空シャフト、永久磁石（ネオジム磁石）により構成される。図4に示す攪拌プレートは、外径40mm、板厚2mmの円形であり、その中心には中空シャフトに固定するためにM16のねじ穴を設けている。この攪拌プレートには、その半径30mmの位置に、4個の液体通過用孔（直径8mm）を設けている。本装置には、この攪拌翼を4枚設置している。攪拌翼の中央部には、磁気浮上用の永久磁石として外径40mm×内径30mm×高さ16mmの磁石En(n=1,2)が設置されている。また、攪拌翼の両端部には、磁気浮上用の永久磁石が固定されている。攪拌槽上部の磁気浮上部には、受動型磁気軸受けを参考にした磁石配置を採用した。攪拌翼上部に固定する磁気浮上用磁石のベースは、外径25mm×内径25mm×高さ9mmの永久磁石an(n=1,2)であり、これを2個結合させて1つの磁石としたものを（磁石Aと呼ぶ）を設置した。この磁石Aを囲むようにして、外径50mm×内径38mm×高さ30mmの永久磁石Bを設置し、磁石対A-Bの間に働く磁気力によって攪拌槽内で攪拌翼を磁気浮上させることができる。また、図5に攪拌翼下部に固定する磁気浮上用の永久磁石Cn(n=1~16)を示す。長さ20mm×幅5mm×高さ5mmの角型の磁石Cnを水平面から45°傾けた状態で、放射状に等間隔で16個設置する。同様にして、長さ40mm×幅5mm×高さ5mmの角型の永久磁石Dn(n=1~16)を放置状に16個設置する。図6に磁石Dnの配置を示す。これらの磁石Cn、Dnを図7に示すように配置する。本装置では、図7に示すように磁石Cn、Dnを配置することにより、攪拌翼に鉛直方向だけでなく水平方向に磁気力を作用させ、完全非接触での攪拌翼の磁気浮上を試みた。また、磁石Cn、Dnは図8に示す磁化方向で配置している。このような配置をハルバッハ配列と言え、磁石Cn、Dnの対向する面に磁界を集中させることができる。逆にその磁石の反対面では磁界が弱まる。本装置の攪拌翼は、この磁石Cn-Dn間で働き、前節の磁石対A-B間で働く磁気力によって攪拌槽内で磁気浮上している。表1に本混合装置に使用した磁石の仕様を示す。
電磁力加振方式を採用した磁気浮上型攪拌翼を有する振動型ミキサーの開発

2.1 基本構造

電磁加振式振動型混合装置の構造

図7に本研究で製作した電磁加振式振動型混合装置の全体図を、図8に磁石の配置と磁化方向を、図9にフランジを示す。この攪拌翼は、攪拌プレート、中空シャフト、永久筒型攪拌槽(アクリル製)である。攪拌翼はこの中を上下間隔で磁気力によって磁気浮上させる。

表1. 永久磁石の仕様

<table>
<thead>
<tr>
<th>Magnet</th>
<th>Size[mm]</th>
<th>Adsorptive power[N]</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1, 2</td>
<td>φ30x25x9</td>
<td>90</td>
<td>N35</td>
</tr>
<tr>
<td>B</td>
<td>φ50x38x30</td>
<td>381</td>
<td>N35</td>
</tr>
<tr>
<td>E_1, 2</td>
<td>φ40x30x16</td>
<td>260</td>
<td>N40</td>
</tr>
<tr>
<td>C_n</td>
<td>20x5x5</td>
<td>31</td>
<td>N40</td>
</tr>
<tr>
<td>D_n</td>
<td>40x5x5</td>
<td>66</td>
<td>N35</td>
</tr>
</tbody>
</table>

本研究においては、永久磁石のみによる攪拌翼の安定な磁気浮上が実現できなかったため、その外周面にすべり軸受が設置されたセンターシャフトを用いて攪拌翼の運動を上下方向のみに拘束している。また、磁石 C_n-D_n 間に磁石 C_n と磁石 D_n の配列の組み合わせにより磁気反発力または吸着力が働くことが確認されている(第3章参照)。そのため、磁石 C_n-D_n の配置を図7に示す。
2. コイルの仕様

2.3 攪拌翼加振用コイル

本研究で用いたコイルを図10に示す。また、その仕様を表2に示す。コイルの形状は内径50mm、外径100mm、長さ90mmであり、総巻数は644巻である。コイルは、外径48mmの攪拌槽の外部に、その長さ方向が鉛直になるように設置されている。コイルに交流電流を流して周期変動する交直流磁場を発生させ、攪拌翼に取り付けた永久磁石が電磁気力を受けることで攪拌翼が加振する。コイルの通電時に使用する機器配置を図11に示す。コイルに発生する交直流磁場の周波数は、関数発生器（岩崎通信機、SG-4321）により設定した。この関数発生器から出力された電流をバイポーラ電源（高砂製作所、BWS40-7.5）により増幅させ、コイルに通電を行う。コイルと増幅器の間の電流計（日置電機、DT4282）によりコイルに流れ電流を計測した。

3. 磁気力測定実験と磁気力の解析

3.1 磁気力測定実験の概要

本実験では、攪拌槽下部の磁気浮上用のごく磁石Cnと磁石Dnの間に働く磁気力を磁気反発力測定装置を用いて測定した。また、磁石Cn-Dn間の磁気力を有限要素法3次元電磁界解析ソフトウェア（ミューテック、μ-MF）を用いて解析し、実験結果と解析結果の比較を行った。

<table>
<thead>
<tr>
<th>Copper wire</th>
<th>Diameter[mm]</th>
<th>Size[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>φ1.7</td>
<td>φ100×50×90</td>
</tr>
<tr>
<td>Number of windings</td>
<td>644</td>
<td></td>
</tr>
<tr>
<td>Heatproof temperature[℃]</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

3.2 実験方法

磁気力測定実験装置の全体図と概略図をそれぞれ図12、図13に示す。図12に示すように、磁石Dnを磁石保持器に固定し、その下にロードセル（共和電業、LM-2KA-P）を設置する。装置上部のプレートは、中空シャフト及び磁石Cnと一体になっており、プレートを押し下げるごとで磁石Cnの位置（Cn-Dn間ギャップ）を変更させて、磁気反発力を測定した。実験は、図7に示すように磁石Cnと磁石Dnの距離をh[mm]とし、磁石Cnをh=10mmの位置から0.5mmずつ磁石Dnに近づけていき、各位置における磁気力の測定を行った。この時、各点においてロードセルから出力された信号を動ひずみ計（共和電業、DPM-600）に入力後、PCでデータ処理を行った。なお、本実験における磁石Cn、Dnの磁化方向（ハルバッハ配列）は図14に示す通りである。
3.3 実験結果および解析結果

図15に磁気力の実験結果と解析結果を示す。図15中の○が実験結果、●が電磁界解析ソフトウェアによる解析結果である。横軸は磁石Cnと磁石Dnの距離[m]、縦軸は16個の磁石Dn（以後、磁石Dと呼ぶ）が16個の磁石Cn（以後、磁石Cと呼ぶ）から受ける磁気力$P[N]$を示している。なお、ハルバッハ配列と通常の配列（磁石CnとDnの同極を対向させた場合）による磁気力の比較を行うため、図15の○をハルバッハ配列を用いた解析結果I、●を通常の配列を用いた解析結果IIとしてそれぞれ示す。図15の解析結果から、ハルバッハ配列は通常の配列に比べて非常に強い磁気力が作用することが分かれる。例えば、$h=5mm$において磁石Dが受ける磁気力は、ハルバッハ配列の場合が約92N、通常の配列の場合が約14Nであり、ハルバッハ配列を適用することにより、通常の配列よりも約6.6倍の強い磁気力が作用することが確認できる。次に解析結果と実験結果を比較すると、$h=5mm$において磁石Dが受ける磁気力の実験結果は約70Nであり、解析結果よりも20N以上低い値となった。これは、解析では磁石Dに働く磁気力のx、y方向成分の合計はONであるが、実験装置の製作段階において磁石Cn、Dnを組付誤差なしに等間隔に設置することは現実的に難しく、実験では磁気力の不均等によりx、y方向に力を逃げてしまったためであると考えられる。

また、図14に示すように、本研究では磁気浮上型攪拌翼を有する振動型ミキサーの開発を目的としている。図14は、磁石CnとDnを固定して磁石Dnを2軸周りに90°回転させたとき、磁石Cnの磁化方向と回転させる前の磁化方向とも同一となる。図15において、図14に示す磁石Dnを固定し、磁石Cnを反時計周りに$θ=0°$から112.5°ずつ回転させたときに磁石Cn-Dn間の働く磁気力を見積もって電磁界解析ソフトウェアによって解析した。図16にその解釈結果を示す。横軸は永久磁石Cnの回転角度[deg]、縦軸は磁石Cnと磁石Dnが受ける磁気力[P[N]]を示している。なお、図16において、図14に示す2軸の正の向き（鉛直上向き）に働く力を正とする。攪拌翼側に設置される磁石Cnに働く磁気力は、図14の磁石配置($θ=0°$)のときに最大で40.8N（反発力）を示し、そこから$θ=45°$まで減少する。そして$θ=45°$のとき最小の33.4N（吸力）を示し、$θ=45°$から$90°$まで磁気力は上昇する。この解析結果から、磁石Cnと磁石Dnの配列の組み合わせにより、磁石Cn-Dn間には強磁気反発力をともに吸力も働くことが確認できる。本研究で使用する磁気浮上型攪拌翼は、永久磁石同士の磁気反発力を利用するため、磁石Cn、すなわち攪拌翼の回転を拘束した上で装置を稼動させている。

4. 水中における攪拌翼の振動特性

4.1 実験方法

本実験では、駆動源であるコイルに交流電流を流し、攪拌槽内の水を満たした状態で攪拌翼を振動させた。コイルに流す交流電流の加振周波数fを3～20Hzまで0.2Hz刻み
波数で9.9Hzと12.9Hzにおける攪拌翼の振動波形をそれぞれ示す。本混合装置における攪拌翼の回転数は、磁気浮上用の磁石Cs-Ds間の磁気ばねの硬さによって調整可能である。攪拌・混合対象となる物質の特性に合わせて、攪拌翼の回転数を調整した上で、共振点近傍の周波数域で混合装置を運転することによって、効率的に攪拌・混合処理を行えるものと期待できる。上記の攪拌翼の振動特性は、従来の機械駆動式振動型混合装置とほぼ同等なものである。このことから、本研究で試作した混合装置は、水と同等の物質を持つ液体に対しては、効率的な混合処理を実現できる可能性ももつことが期待できる。

5. 結論

本研究では、攪拌槽内に永久磁石の磁気力によって浮上する磁気浮上攪拌翼を用いた振動型混合装置の開発を目的として、攪拌翼の磁気浮上機構の検討を行った。本研究では攪拌翼を磁気浮上させる方法として、角度の永久磁石を放射状に配置し、さらにその磁石の配列をパラッピッ配列を採用した。本装置においては、永久磁石のみによる攪拌翼の安定な磁気浮上は現実でなかったが、磁気力測定実験及び磁気力の解析によって、この磁石配置の磁気ばね特性を確認した結果、本混合装置の磁気浮上機構として利用できることを確認した。また、水中における攪拌翼の振動特性を確認し、本混合装置で採用した磁気浮上機構において、攪拌翼を十分な加振周波数と振幅で振動させることが可能であることを確認した。今後は、実用化に向けて更なる装置の改良を行っていく予定である。

終わりに、本研究は、平成28年度科学研究費基盤研究(C)の補助を受けたことを付記し、関係各位に謝意を表する。

参考文献

1) 小川 浩平、吉藤 文良、佐藤 省一、平田 雄志編：攪拌・混合技術、アイビル、1998。
2) 高橋 幸司：液体混合の最適設計と操作、テクノシステム、2012。
3) T. Taniguchi: Mixing apparatus, U.S. Patent 5, 178461, 1933。
4) 大村 直人、小村 崇信ほか 4 名：振動型混合装置 “VIBRO MIXER”の混合特性、化学工学会、化学工学論文集、第 30 巻 1 号、pp.1-6、2004。
5) 近藤 優也、岡部 仁、満川 貴之、白山 智洋：磁気浮上攪拌翼を用いた振動型混合装置の開発（コイルによる交流磁場を用いた加振方法の場合）、宮崎大学工学部紀要、Vol. 45、pp.31-56、2016。
6) 大路 貴久、東 剛人ほか 4 名：永久磁石反発を用いた磁気浮上天秤の試作、日本 AEM 学会誌、Vol. 9、No. 4、pp.503-508、2001。
Experimental and Numerical Investigation on Surface Vortices Behavior with Flow Rates in Water Pump Sump

W. GANGa), B. SHINb)

Abstract

A numerical and an experimental investigation on a suction vortices, free vortices and subsurface vortices behavior in the model sump system with multi-intakes is performed at several flow rates and water levels. A test model sump and piping system were designed based on Froude similitude for the prototype of the recommended structure layout by HI-9.8 Standard for Pump Intake Design of the Hydraulic Institute. A numerical analysis of three dimensional multiphase flows through the model sump is performed by using the finite volume method of the CFX code with multi-block structured grid systems. A k-o Shear Stress Transport turbulence model and the Rayleigh-Plesset type cavitation model are used for solving turbulence cavitating flow. Several types of free surface and submerged vortex which occurs with each different water level are identified through the experimental investigation. Minimum water levels and swirl angles were determined for the first appearance of 6-types of surface vortices. From the numerical analysis, the vortices are reproduced and their formation, growing, shedding and detailed vortex structures are investigated.

Keywords: Pump sump, Free surface vortex, Sub-surface vortex, Swirl angle, Minimum water level, Multi-intakes

1. INTRODUCTION

The pump system is used commonly in the industries because it has simple structure and covers a wide range of discharges and heads\textsuperscript{3). However, during pump operation, cavitation, flow separation, pressure loss, vibration and noise occur often due to unsteadiness and abnormality of flow. Especially, air-entrained free- and sub-surface vortices observed in sump pumps seriously damage the pump system. According to the Hydraulic Institute Standards (HIS)2), for a pump sump design, therefore, these vortices should be prevented and their disappearance must be verified by pump sump model tests before the construction of pump station.

To reduce these vortices and for the advanced pump sump design, it is very important to know the detailed flow information in sump system. For this purpose, to date many researchers have made experimental and numerical studies on the flow in pump sump. For instance, Johansson et al.3) did a model study of sump by a physical test and a CFD, and presented advancements that have been made in the field of hydraulic modeling of pump intakes. A detailed velocity distribution around the submerged vortex cavitation in a pump intake was investigated by means of PIV (particle image velocimetry) by Nagahara et al.\textsuperscript{4). Measured data such as velocities around vortex and core radii of cavitating vortices were compared with CFD predictions and discussed about this comparison.

On the other hand, due to the high cost for design and physical model test CFD analysis has recently considered as an effective tool to evaluate the flow around the suction intake in pumps. Iwano et al.5) made a trial of an application of a numerical prediction method of a submerged vortex to the flow in pump sumps in order to increase the vortex resolution by the conventional code based on the Reynolds Averaged Navier-Stokes equations. Detailed vortex flow phenomena including vortex cavitation, submerged vortex, vortex breakdown and vortex filament were investigated at the flow simulation around bell mouth with and without baffle plate in the single intake. Regarding the CFD prediction and model experiment on suction vortices in pump sump, recently Okamura et al.6) performed a benchmark test by using several CFD commercial codes and reviewed the results to check their applicability to the design of the pump station instead of the expensive conventional experimental method. Kim et al.7) studied about the characteristics of the subsurface vortex in the three-different pump sump and showed the usefulness of CFD to predict the subsurface vortex generation. As reviewed so far many parametric studies of pump intakes have made. Unfortunately, however, detailed behavior of free surface and subsurface vortices, minimum water levels incepting the vortices, swirling angle and so on are not investigated yet.

In this paper, a numerical and an experimental investigation on a free and subsurface vortices behavior in the model sump system with 4-intakes is performed at some different flow rates and water levels. Several types of free surface and submerged
vortex which is known that they occur at specified water level are identified through the experimental investigation, and they are reproduced by the numerical analysis. Minimum water levels and swirl angles were measured and found out their relations with 6-types of surface vortices.

2. EXPERIMENTAL APPARATUS

A test model sump for experiments was designed according to the recommended structure layout by HI-9.8 American National Standard for Pump Intake Design as shown in Fig. 1. It consists of pumps, flow control valves, flow meters, swirl meters, a reservoir tank and a water tunnel with 4-bell mouths. The water channel of the intake was divided into four sections by the center pier and an acrylic resin window was installed in the wall around the bell mouth chamber as shown in Fig. 2. In this figure, the Arabic figures represent an assigned number of the bell mouth. The full length of the model sump is 16 times bell mouth diameter, D and the largest width is about 20.3D as illustrated in Fig.3. Its height is 4.8D and a converged angle of wall is 10-degrees. Distance between the inlet bell and floor is 0.4D and the Inlet diameter of the suction pipe is $d=0.6D$, respectively.

The experiment was done according to the guidance of model tests of intake structures at several different discharges with subcritical flow of Froude Numbers (F_r) between 0.46 and 0.36.

3. EXPERIMENTAL RESULTS

The model test was performed at three flow rates
of 126.9 m3/h, 108.9 m3/h and 96.9 m3/h, and three different combinations of bell mouth operations as summarized in Table 1. The Froude number is kept the same for the model and prototype. The water level of the minimum pump inlet bell submergence is kept by $(1+2.3F_r)D$. The inlet bell velocity of 1.7 m/s for the prototype sump was fixed in all experiments. As the undesirable vortices that will be encountered in the operation of pump sump, 6 free surface vortices (Type A1 to Type A6) and 3 subsurface vortices (Type B1 to Type B3) are introduced in the HI standard$^2)$. Therefore in order to identify these vortices the experiment was conducted by gradually decreasing the water level from the low water level recommended HI standard. And then, the minimum water levels and swirl angles at which the vortices are appeared firstly were investigated.

Figure 4 shows some typical free surface vortices observed in the present experiments. These visible vortices are reproduced well with those of the HI standard.

Figure 5 shows a measured minimum water levels (solid lines with symbols) and swirl angles at the 6-types free surface vortices. The vortices of Type A1 through Type A5 are occurring in ascending order of the vortex type with the decreasing of water level. Especially Type A2 vortex which is an acceptable criterion in the construction of pump sump occurred at about 35% lower level than the recommended value of

Fig. 4. Free surface vortices.

Fig. 5. Minimum water level and swirl angle.
HI standard. But swirl angles measured by using the swirl meter is still not so good in this water level.

4. NUMERICAL SIMULATIONS

To check the occurrence of visible surface vortices, and to investigate detailed structure and behavior of them a numerical simulation of three dimensional multiphase flows in the model sump was performed by using the finite volume method of the CFX code. A multi-block structured grid system with about 1x10^6 grid points was applied as seen in Fig. 6. The shape of the model sump is the same as the one used in the experiment except both left and right wings. The flow condition is the same as that of the Case1-3 in Table 1 with Q=126.9 m^3/h and 4-bell mouth (#1+#2+#3+#4) operation. Specified flow rates are imposed on the up- and downstream boundaries and slip and non-slip wall boundary condition are given on the free surface and walls, respectively. The working liquid is the city water at 20°C.

Fundamental equations are the continuity equation and the Reynolds Averaged Navier-Stokes equations as follows;

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0
\]

(1)

\[
\frac{\partial \rho u_j}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j u_j) = - \frac{\partial p}{\partial x_j} + \left[\mu_{eff} \left(\frac{\partial u_j}{\partial x_j} + \frac{\partial u_i}{\partial x_i} \right) \right] = 0
\]

(2)

where \(\rho, u_\text{and} p \) are fluid density, velocity and static pressure. \(t \) is time and \(\mu_{eff} \) is effective viscosity considered molecular viscosity and turbulent viscosity. A \(k-\omega \) Shear Stress Transport turbulence model and the Rayleigh-Plesset cavitation model were used for solving turbulence cavitating flow.

Figure 7 shows a computational result at the Case 1-3 flow condition in Table 1. It is clearly to see that the behavior of flow in here is very large and complicated at the both sides. Therefore, swirling flow appears with high turbulence intensity before moving to the guide channels. From that the unexpected vortex can be formed and influenced seriously to the quality of suction pump. And this phenomenon needs to be prevented as much as possible.

![Side view of model sump.](image1)

![Near bell mouth.](image2)

Fig. 6. Computational grid.

![Side view.](image3)

![Front view.](image4)

Fig. 7. Streamlines in flow channel.
Some numerical results of streamline distributions and velocity vectors at the #1 and #3 bell mouth and suction pipe are shown on Figs. 8 and 9. Here red color represents the high velocities. It is very interesting to say that submerged vortex is moving from bottom of channel to the bell mouth as illustrated clearly in Fig. 8. Especially the direction of this vortex flow in bell mouth #1 and #3 is really similar to that one appeared in experimental model, in which the direction of clockwise for bell mouth #1 and opposite direction for bell mouth #3. Figure 9 shows two bottom views of submerged vortex by velocity vectors at the cross section of bell mouth entrance. The vortex strength, the formation of vortex and its core are well simulated.

CONCLUSION

An experimental and a numerical investigation on a suction vortices behavior including cavitation in the model sump system with 4-intakes were performed. From the experiment, A-Type free surface vortices which occur at specified water level were identified. The vortices of Type A1 through Type A6 were appeared in ascending order with the decreasing of water level. Minimum water levels were measured somewhat rather higher than the low flow rate.

![Fig. 8. Computational results of submerged vortex by streamlines in #1 and #3 bell mouth.](image)

![Fig. 9. Computational results of submerged vortex by velocity vectors in #1 and #3 bell mouth.](image)

Through the multiphase flow analysis by CFD, free and subsurface vortices are reproduced and their formation, growing, shedding and detailed vortex structures were well investigated, so that it is very easy to understand the complicated vortex flow behavior in the pump sump.

REFERENCES

Numerical Analysis of Mixed Fluid Jet Flows through Cutting Fluid Supplying Nozzle

S. CHUNGa), B. SHINb)

Abstract

Metal cutting operation involves generation of heat due to friction between the tool and the cutting materials. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces, and in slicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet flow. In this paper, to develop cutting fluid supplying nozzle with ultra-thin oil film coating of water droplet, a numerical analysis of three dimensional mixed fluid jet flows through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of air, water and oil in multi-component fluid were also investigated. And the important flow information for advance design of cutting fluid supplying nozzle was drawn.

Keywords: Numerical analysis, Multi-stage nozzle, Oil film coating system, Jet flow characteristics, Multi-component fluid mixed jet

1. INTRODUCTION

During the cutting process of metal and nonferrous metals, high heat and pressure happen between cutting tool and material as well as cutting chips1-2). To bring down the high heat, cutting oil is used as a coolant. However it would give rise to serious problems of dermatitis, respiratory organ obstacle, oncogenesis and environmental pollution3). To reduce these problems, cutting fluid supplying apparatus which use extremely small amount of cutting oil by coating technology to make oil film over water particle is developed. Nozzle is used to jet cutting fluids in the apparatus4). In the development of high reliable and efficient cutting fluid supplying apparatus with jet technology, application and consideration of fluid dynamics are very important5-8).

In this paper, to develop cutting fluid supplying nozzle with ultra-thin oil film coating to reduce environmental pollution, a CFD simulation of 3-D (three-dimensional) mixed fluid jet flows through multi-stage nozzle was carried out by using a CFX 10 Code9). First, through the calculation of top nozzle (the front part of multi-stage nozzle) hydromechanics behavior of simple shaped nozzle is investigated. Then, the whole complicated multi-stage nozzle is computed to investigate mixing status of air, water and oil and hydromechanics characteristics. Detailed jet flow mechanism such as nozzle exit velocity, development of mixing region, re-entrance, jet intensity and flow pattern in multi-stage nozzle are simulated.

2. NUMERICAL ANALYSIS

The flow through the multi-stage nozzle was assumed by incompressible turbulence flow. Finite volume method with second order resolution scheme and k-ε turbulence model is used.

Fundamental equations are the continuity equation and the Reynolds Averaged Navier-Stokes equations as follows;

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j}(\rho u_j) = 0
\]

\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j}(\rho u_i u_j) = - \frac{\partial p}{\partial x_i} + \frac{\mu}{\mu_{ef}} \left[\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right] - \frac{\partial}{\partial x_j} \left[\mu_{ef} \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} \right) \right]
\]

where \(\rho, u\) and \(p\) are fluid density, velocity and static pressure. \(t\) is time and \(\mu_{ef}\) is effective viscosity considered molecular viscosity and turbulent viscosity. In this paper, the turbulent viscosity was estimated by solving the turbulence kinetic energy and dissipation equation.

Figure 1 shows a schematic diagram of the multi-stage nozzle which is actual model designed by...
Hantech I & P Co., Ltd10). It consists of the top nozzle, water and oil spray nozzle, water drop chamber and oil forming chamber.

2.1 Computational grid

Figure 2 shows computational grid generated by prism and unstructured type mesh for simple circular shaped top nozzle flow. In this figure, the left-hand side represents top nozzle which is designed by convergent-divergent nozzle with consideration of jet intensity and the scattering of cutting fluid. The right-hand side shows a free-jet region to investigate development of jet flow and velocity distribution.

Figure 3(a) shows a solid model of whole multi-stage nozzle. Figure 3(b) shows an example of unstructured computational grid around the water drop forming chamber which is one of main mixing parts of cooling fluids. To obtain ultra-thin oil film to be coated on the surface of tiny water drop, it consists of very complicated ring type and circumferential several passages as seen these figures.

2.2 Boundary condition

A fixed inlet velocity condition based on the designed outlet velocity of top nozzle and atmospheric pressure at nozzle exit were imposed. The working fluid of water of 25°C is released by free jet flow in the exit of the nozzle.

On the other hand, regarding the boundary condition of the three inlets of air inlet (inlet 1 in Fig.3(a)), water spray nozzle (inlet 3) and oil spray
nozzle (inlet 2) in multi-stage nozzle, a fixed velocity of 0.03m/s, 0.04m/s and 0.0177m/s respectively are imposed according to the actual operation condition.

3. NUMERICAL RESULTS

3.1 Top nozzle

Figure 4 shows numerical results of pressure and velocity magnitude distribution and velocity vectors around top nozzle. Pressure inside nozzle is well propagated toward nozzle exit showing atmospheric pressure. Free jet velocity is decreasing at the downstream from the nozzle exit and circular jet flow phenomena such as development of boundary layer near core region, jet velocity distribution and re-entrainment is hydrodynamically well simulated.

3.2 Multi-stage nozzle

In Fig.5 numerical results of pressure and velocity magnitude contours on mid-section plane at air-inlet of multi-stage nozzle are shown.

Fig. 5. Computational results in the middle section along the water spray nozzle.

(a) Pressure distribution.

(b) Velocity magnitude distribution.

Fig. 6. Velocity vectors around oil forming chamber

(a) Near oil spray nozzle.

(b) Re-inflow passage.

(c) Re-inflow junction (③).

Fig. 7. Computational results in middle section along the oil forming nozzle.

(a) Junction of oil spray nozzle (①).

(b) Junction of water spray nozzle (②).
Fig. 9. Computational results of velocity distribution, pressure, velocity vectors at several inflow sections.
Flow is flowing toward right-hand side, and relatively low pressure is distributed near oil spray nozzle (① in Fig.5(b)) and water spray nozzle due to contraction of flow passages. Then the pressure gradually decreases toward nozzle exit. On the other hand in Fig.5(b), relatively high velocity at oil forming nozzle influences on the velocity near water forming nozzle. By this influence, most of fluids from oil forming chamber flows into water forming chamber, so that film coating is accelerated. Eventually the ultra-thin oil film coating for water droplet is obtained. At the exit, oil coated water droplets (coolant) vigorously jet out due to the decrease of flow passage. In details of velocity vectors in Fig.6, a small circulation chamber is observed at main nozzle near the junction area in Fig.6(a). After main stream of oil, the remains of oils reenter to the water forming chamber through re-inflow passage(② in Fig.5(b)) in Fig.6(b) and they help to mixing water and oil.

Figure 7 shows numerical results at another middle section plane along the oil forming nozzle. As investigated in Figs.5 and 6, it is easy to understand the velocity and pressure distributions. Especially, pressure near junctions of spray nozzles propagates like a wave of sound from its source. Nozzle areas are easily detected from the velocity contours. The main stream form the air and oil spray nozzle is well flow down through the main nozzle. In Fig.8(a) and (b), the flow has somewhat large circulation in the passages both nozzle junctions before it flows into main nozzle. This circulation plays an important role of mixing the small amount of oil and air. Then, fluid from the bypass is merged into main stream without circulation, so that it makes smooth mixing and flowing of cutting fluid. In this figure, numbers of ①, ② and ③ in circle represent the numbers in Fig.7(a).

Figure 9 shows pressure, velocity magnitude contours and velocity vectors on several inflow sections of the oil spray nozzle, water spray nozzle and water drop chamber in multi-stage nozzle. It is well simulated that from each nozzle inlet located at circumferential direction of main nozzle, mixing flows are coming into main nozzle. Pressure is gradually decrease along the flow direction and flow velocity is increase at the nozzle. Several pathway and jet flows help making tiny water droplet and thin oil film coatings.

Figure 10 shows streamlines of internal flow in entire multi-stage nozzle from nozzle inlet to outlet. It reads off the complicated flow structure and mixing process in recirculation regions, inflow and outflow channel, where recirculation regions are designed for smooth mixing among air, water and oil. Actually the present multi-stage nozzle was made and tested, and showed its excellent performance in the rate of reuse of cutting oil, the evaluation of air and water pollution, roughness of cutting surface and the replacement period of cutting fluid\(^{10}\). However, due to the computational problems, it is still difficult to predict the size of water droplet and the thickness of oil film coating.

4. CONCLUSION

For the purpose of the advance design of cutting fluid supplying nozzle with ultra-thin oil film coating of water droplet, numerical simulation of three dimensional mixed fluid jet flows through multi-stage nozzle was performed. As the results, internal flow in complicated multi-stage nozzle was well simulated at the entire flow regions including water droplet forming chamber, oil and water spray nozzle, and top nozzle, so that it is well known the mixing process of air, water and oil in multi-component flow and their complicated flow pattern and structure. In the computation of top nozzle, jet flow characteristics such as development of mixing flow, re-entrainment and jet intensity were intelligibly analyzed. As far as this simulation is concerned, the present model of multi-stage nozzle system is favorable especially in the jet flow structure, atomization of water droplet and mixing of working fluids.

REFERENCES

手振動障害の発症リスク低減を目的とした振動ランマの開発

盆子原 康博 a)・近藤 孝広 b)・濵畑 貴之 c)・井上 大地 d)・松浦 快太 e)

Development of a Tamping Rammer for Decreasing the Risk of Hand-Arm Vibration Syndrome

Yasuhiro BONKOBARA, Takahiro KONDOU, Takayuki HAMAHATA
Daichi INOUE, Kaita MATSUURA

Abstract

Hand-arm vibration syndrome characterized by the Raynaud’s phenomena is known as a health disorder to cause by the long-term use of the hand-held vibrating tools and by excessive exposure to hand-arm vibrations. The purpose of this study is to develop a very low-vibrational tool using self-synchronization phenomena in order to decrease the risk of the hand-arm vibration syndrome. In this paper, the prototype experimental apparatus with a generation mechanism of synchronous vibration suitable for a tamping rammer is developed based on the mechanism of the impact model with two oscillators developed in the previous report. The availability of the synchronous vibration generated in the prototype experimental apparatus is investigated based on sand compaction tests and numerical computations using the shooting method. In addition, the experiment for measuring the daily vibration exposure values and the compaction forces was conducted to estimate the performance of a vibration control and a compaction. The results confirm that the stable synchronized vibrations which are able to achieve a good balance between vibration control and excitation could be generated by setting the system parameters appropriately.

Keywords: Nonlinear Vibration, Self-Excited Vibration, Synchronization, Vibration Control

1. はじめに

現在、我が国では手腕振動障害の発症を予防するために、労働基準局が示したチェーンソー以外の振動工具の取扱い業務に係る振動障害予防対策指針（基発0710第2号）に基づいて、低振動工具の選定や防振手袋の使用などといった対策が講じられている1,2）。しかしながら、削岩機などのような振動利用を目的とした工具では、内蔵された振動体の励振力やピストンによる打撃力によって把持部に大きな振動が不可避的に発生するため、人体への振動伝播を完全に防止することは困難である。このため、工具に生じる振動加速度レベルに応じて1日あたりの振動ばく露の限界時間が定められ、作業者の連続作業時間を制限している状況にある。しかし、手腕振動障害の発症リスクを低減することができれば、作業効率や生産性の向上に打撃力測定、作業者の連続作業時間を制限している状況にある。しかし、手腕振動障害の発症リスクを低減することができれば、作業効率や生産性の向上に大いに貢献できるため、手持ち振動工具の低振動化に取り組むことは非常に重要な課題である。

このような状況を踏まえて、本研究では、非線形力学系で発生する自己同期現象に着目して、工具把持部の低振動化を実現する同期振動発生機構の開発を目指している。自己同期現象とは、複数の非線形自励振動子が結合した系において、振動子間の相互作用によって特定の定常周期振動状態に引き込まれる現象であり、振動利用の観点から工学的に有用な特性を有している。先行研究4）では、代表的な手持ち振動工具である振動ランマを対象として同期振動発生機構を開発するとともに、制振と励振を制御して実現し得る最適な同期振動が発生することを示した。本報では、開発した同期振動発生機構の有効性について検証するため、その機構に基づいて振動ランマの試作機を開発した。さらに、試作機の試作機の機械的性能について調べた。

2. 振動ランマの試作機

振動ランマとは、エンジンで駆動するピストンや偏心モータなどを加振源として利用して、地面の繰り返しを行う手持ち振動工具である。一般的な振動ランマでは、上部ブロックに加振源とハンドル（把持部）を有し、その下にコイルばねで結合した打撃板がある。この打撃板を上述の加
振動源によって励振することにより、地面を繰り返し打撃することができる。

本研究では、このような実験の機械と先行研究で開発した2振動子衝突モデルの機構に基づいて、図1に示すような振動ランマの試作機を開発した。この試作機は、主に上部ブロック（図1(b)の赤色のブロック）と2個の下部ブロック（図1(b)の緑色と青色のブロック）から構成されており、上部ブロックと下部ブロック間はコイルばねで結合している。上部ブロックには把持部が設置されており、下部ブロックには地面を打撃するための打撃板が設置されている。すなわち、上部ブロックが制振対象であり、下部ブロックが制振対象である。下部ブロックには、DCモーターの回転軸の両側に不釣合いおもりを取り付けた回転型自励振動子（以下、振動子と呼ぶ）が下部ブロックの対象位置にそれぞれ2個ずつ（合計4個）搭載されている。安全のため振動子の不釣合いおもりの回転部分が露出しないように、振動子全体をブロックの中に設置している。

振動子の不釣合いおもりは、すべて同一方面で回転するように設置されており、個々に与えられる印加電圧によって独立して駆動することができる。また、下部ブロックは、上部ブロックに取り付けられたリニアガイドによって同一方向（鉛直方向）に運動するように拘束されている。なお、試作機を設計するにあたって、各ブロックの形状や振動子の設置位置を調整することにより、ブロックの重心がすべて中心軸上に位置するように設計している。これは、下部ブロックに生じた振動によってモーメントが生じて横揺れ振動が発生しないようにするためである。

試作機の全体の大きさは幅0.39m×高さ0.24m×奥行き0.24mで、総重量は約12.9kgであり、内側の下部ブロックには大きさが0.2m×0.2mの打撃板を1枚、外側の下部ブロックには大きさが0.1m×0.2mの打撃板を2枚設置している。振動子には、15Wの出力を有するDCモーター（アクシオン社製、A-max32、公称電圧12.0V）を用い、下部ブロックにそれぞれ2個ずつ搭載している。両端の回転軸に設置した不釣合い長さは2.43kgmmである。その他、系パラメータについては後述する。

3. 解析モデルおよび運動方程式

試作機の開発にあたり、把持部の制振と打撃部の励振を同時に実現可能な同期振動を発生させるために、図2に示すような解析モデルを対象として数値計算による最適設計を行った。このモデルでは、上部ブロックをブロック1、外側の振動子を搭載した下部ブロックをブロック2、内側の振動子を搭載した下部ブロックをブロック3と呼ぶ。また、振動子の不釣合いおもりを左側から順におもり1、1,1,1、おもり32、おもり22と呼ぶ。解析にあたり、各ブロックは剛体として取り扱い、ブロック1の質量をM1、ブロック2およびブロック3の質量をそれぞれM2、M3（DCモーターの質量も含む）とする。不釣合いおもりはすべて質量m、不釣合い長さRの质点として取り扱う。各ブロック間を連結するスライドガイドのブロックとレール間には粘性減衰力が作用するものと仮定して、それぞれの粘性減衰係数をc1およびc2、c3とする。ブロック1とブロック2およびブロック2とブロック3を結合するコイルばねのばね定数をそれぞれk1、k2、k3とする。また、装置を把持する影響を考慮するため、ブロック1とブロック3の下面に断片線形ばね（ばね定数k1、k3）および
断片線形ダッシュボット（粘性減衰係数ζ_1, ζ_2）を設置している。

各ブロックは鉛直方向（下向きを正とする）にのみ運動するものとし、ブロック間のカイコはおよと断片線形はおが自然長となり、ブロック間の変位をそれぞれx_1, x_2, x_3とする。不釣り合いおもりについても、DCモータの回転系に対しておもり 21 とおもり 31 は反時計方向に、おもり 22 とおもり 32 は時計方向に回転するものとし、角変位をそれぞれ$\theta_1, \theta_2, \theta_3, \theta_4$とする。このとき、各要素の運動方程式は次のように求められる。

ブロック 1:
$$M_1 \ddot{x}_1 + c_1 x_1 + 2k_1 (x_1 - \ddot{x}) = M_1 g \tag{1}$$

ブロック 2:
$$M_2 \ddot{x}_2 + c_2 (x_2 - x_1) + 2k_2 (x_2 - x_1)
+ 2c_1 \dot{x}_2 \dot{x}_1 + 2k_1 \ddot{x}_2 \dot{x}_1
= M_2 \ddot{x} + mR \sum_{j=1}^{2} (\dot{\theta}_{2,j} \cos \theta_{2,j} - \dot{\theta}_{3,j} \sin \theta_{2,j}) \tag{2}$$

ブロック 3:
$$M_3 \ddot{x}_3 + c_3 (x_3 - x_1) + 2k_3 (x_3 - x_1)
+ 2c_2 \ddot{x}_3 \dot{x}_1 + 2k_2 \ddot{x}_3 \dot{x}_1
= M_3 \ddot{x} + mR \sum_{j=1}^{2} (\dot{\theta}_{3,j} \cos \theta_{3,j} - \dot{\theta}_{3,j} \sin \theta_{3,j}) \tag{3}$$

おもり 21:
$$J^* \ddot{\theta}_{21} + B \dot{\theta}_{21} + mgR \cos \theta_{21} = A e_{21} + mR \ddot{\dot{x}}_2 \cos \theta_{21} \tag{4}$$

おもり 22:
$$J^* \ddot{\theta}_{22} + B \dot{\theta}_{22} + mgR \cos \theta_{22} = A e_{22} + mR \ddot{\dot{x}}_2 \cos \theta_{22} \tag{5}$$

おもり 31:
$$J^* \ddot{\theta}_{31} + B \dot{\theta}_{31} + mgR \cos \theta_{31} = A e_{31} + mR \ddot{\dot{x}}_3 \cos \theta_{31} \tag{6}$$

おもり 32:
$$J^* \ddot{\theta}_{32} + B \dot{\theta}_{32} + mgR \cos \theta_{32} = A e_{32} + mR \ddot{\dot{x}}_3 \cos \theta_{32} \tag{7}$$

ここで、
$$M_i = M_1 + M_2 + M_3 \tag{8}$$
$$M_i' = M_1' + 2m, \quad M_i'' = M_3 + 2m$$
$$J^* = J_a + J_p + mR^2$$
$$\ddot{x} = \frac{M_1 g}{2k_2 + 2k_3} + \frac{M_1 g}{2(k_1 + k_2)}$$
$$A = \frac{K_1}{r_a}, \quad B = \frac{K_1 K_F}{r_a}$$

表 1. 試作機の系パラメータ

M_i [kg]	5.20
R [m]	0.0135
J_a [kg·m²]	3.48
K_F [N·m/A]	3.02
J_p [kg·m²]	3.45
K_1 [N·m]	4.33×10⁻⁷
m [kg]	0.179
J_e [kg·m²]	1.94×10⁻⁶
k_2 [N/m]	34000
K_F [N·m/A]	24.1×10⁻³
k_1 [N/m]	34000

4. 実験方法

本実験では、試作機を用いて砂の締め固め試験を実施して、目的の同期振動の発生の有無を調べるとともに、打撃力および手腕振動の測定を行った。使用した実験システムを図3に示す。このシステムでは、打撃力を測定するために全長で長さの上にロードセルを4個設置し、その上に試験片を置いて水平に支持している。そして、その試験片の上に圧力を入れたコンテナを設け、実験時にはその試験片に試作機を挿入する。その際、ロードセルの位置に対して試作機の打撃板が図4に示すような位置となるように設置する。また、打撃時に発生した運動状態に応じて、各ブロックに加速度センサを設けている。今回は、図5に示すように、川砂、腐葉土、砂利の3種類を打撃対象として実験を行った。

具体的な実験方法は次の通りである。まず、試作機を砂面上に設置して、ハンドルをなるべく一定の力で把持する。次に、4個の振動子に同じ大きさの印加電圧を与え、試
作機を駆動する。そして、各ブロックの振動加速度信号を測定し、その周波数分析結果に基づいて目的の同期振動の発生の有無を判定するとともに、同期振動数や各ブロックの振動加速度振幅を求める。また、打撃力についても同時に測定し、その最大値の大きさから機械的性能を評価する。

手腕振動については、国際規格に基づいて周波数補正振動加速度実効値の3軸合成値により評価を行う。周波数補正振動加速度とは、ISO5349-1:2001およびJISB7761-3:2007で定められた周波数補正係数を用いて補正された振動加速度のことである。また、周波数補正係数とは、振動加速度が手腕に与える影響の強さを周波数に応じて定めた係数である。まず、振動工具の把持部に生じる3軸方向の周波数補正振動加速度成分を同時に測定し、周波数補正振動加速度実効値の3軸合成値を次式により求める。

\[a_{\text{hw}} = \sqrt{a_{\text{max}}^2 + a_{\text{max}}^2 + a_{\text{max}}^2} \]

次に、周波数補正振動加速度実効値の3軸合成値から1日の8時間等価振動加速度実効値として、次式により日振動加速度実効値 \(A(8) \) を算出する。

\[A(8) = a_{\text{hw}} \times \frac{T}{\sqrt{8}} \]

ここに、 \(T \) は1日の振動加速度実効値であり、最大2時間までと定められている。

具体的な手腕振動の測定方法は次の通りである。まず、試作機のハンドル部を把持した状態で、上部ブロックに取り付けた3軸加速度センサから加速度信号を10秒間測定する。次に、測定された加速度信号を1/3オクターブバンドに変換した後、周波数補正振動加速度実効値の3軸合成値を求め、そして、式(10)により日振動加速度実効値 \(A(8) \) を求める。

振動工具を使用する際、日振動加速度実効値 \(A(8) \) が限界値の5.0 m/s²を超える場合には、工具の使用時間の短縮、低振動の工具の選定等を行わなければならない。また、 \(A(8) \) が限界値を超えない場合であっても、対策値の2.5 m/s²を超える場合には、振動加速度実効値の抑制、低振動の工具の選定等を努める必要がある。本実験では、対策値2.5 m/s²を制振の目標値として、測定した振動加速度レベルの評価を行った。

5. 実験結果

はじめに、図5(a)に示すような川砂を打撃対象として締め固め試験を行った。本実験では、各振動子に与える印加電圧 \(e \) （4個の振動子とも同値とする）を変化させながら
図6. 時刻歴応答の実験結果（e=10.0 V）。

図7. 時刻歴応答の計算結果（e=10.0 V）。

図8. 同期振動の発生領域と解分枝曲線の比較。

各ブロックの振動加速度を測定した。そして、同期振動発生時の運動状態（以下、同期振動パターンを呼ぶ）を確認して、目的の同期振動パターンであれば、打撃力および手首振動の測定を行った。なお、安全のために印加電圧の上限値を10.0 Vまでとした。

まず、発生する同期振動パターンについて調べた。図6は、DCモータにそれぞれ印加電圧e=10.0 Vを与えて駆動させたときの、各ブロックの振動加速度a1, a2, a3 [m/s²]および打撃力F_{max} [N](4個のロードセルの合計値)の測定結果である。比較のため、実験と同じ条件で各ブロックの時刻歴応答を数値計算により求めた結果を図7に示す。

図6の結果を見ると、励振対象であるブロック2とブロック3が逆位相で振動して砂面に拍打しており、両者の打撃力はほぼ同程度となっている。また、制振対象であるブロック1の振動加速度が下部ブロックに比べて抑制されている。これは、2個の下部ブロックが逆位相で振動するためブロック1に作用する反力が相殺されたことによるものである。この運動状態は、先行研究の2振子衝突モデルでも確認された目的の同期振動パターンであり、4個の振子が一定の位相差で同期回転することによって、制振と励振を同時に実現している。一方、図7の数値計算結果では、衝突時に生じる下部ブロックの加速度が図6の実験結果と比べると非常に大きくなっているものの、同期振動パターンや振動数は概ね一致しているといえる。このことから、解析モデルの妥当性が確認された。

次に、印加電圧を変化させて同期振動の発生領域を調べた。図8は、数値計算によって求めた最適な同期解の存在領域（安定な同期解）と、実験において最適な同期振動が発生した結果をプロットした結果である。図中の縦軸は印加電圧e[V]を示し、横軸は上から同期振動数f_{max} [Hz]、上部ブロック（ブロック1）の振動加速度実効値a_{rms} [m/s²]を示す。また、実線は数値計算結果であり、○印は実験結果。
果を示す。図8の数値計算結果をみると、非常に広い範囲に同期解が存在している。これは、数値計算により試作機の設計を行う際に、最適な同期振動の発生領域の拡大を目的として系パラメータを決定したことによる。一方、実験結果では、$e=5.0\text{V}$から上限値である10.0 Vの範囲で同期振動が安定的に発生し、振動数や振動加速度実効値が数値計算結果に一定の値を一致することを確認した。なお、この他にも発生する同期振動パターンは存在するが、実験を行った範囲ではそれらの発生は確認できなかった。

次に、試作機の機械的性能について調査した。図9は、印加電圧を変更しながら打撃力の最大値 F_{max} [N]と日振動ばく露量 $A(8)$ [m/s2]を測定した結果である。日振動ばく露量については、式(10)において振動ばく露時間 T を最大の2時間として求めた。まず、図9(a)は打撃力の最大値 F_{max} [N]をプロットした結果である。本実験では、約560 N ($e=9.0\text{V}$時)の打撃力が測定された。これは装置の自重（約130 N）の4.3倍程度であり、実用的に十分であるとは言い難いものの、実験後の砂面の状態を観察すると、砂の締め固めには成功していることを確認した。

一方、図9(b)は日振動ばく露量 $A(8)$の測定結果である。前述したように、日振動ばく露量には対策値として2.5 m/s2以下とする基準が定められているが、いずれの結果も対策値以下に抑えられており、把持部の耐振効果が高いことが確認できる。

図9(b)に示す、川砂より柔らかい葉菜土（図5(b)）と粗粒の大きな砂利（図5(c)）を用いた打撃実験で、それぞれ締め固め試験を実施した。日振動ばく露量 $A(8)$を測定した結果を図10に示す。この結果から、打撃対象の硬さなどが異なる条件下においても、日振動ばく露量が対策値以下に抑えられている上、同期振動が広い範囲で発生していることが確認できる。

6. 結論

振動ランマを対象として、工具把持部の低減化を実現する同期振動発生機構を導入した試作機の開発を行った。そして、砂の締め固め試験を実施することにより、開発した試作機の有効性について検証した。その結果、把持部の制振と打撃部の振動を同時に実現可能な同期振動の発生を確認した。また、日振動ばく露量についても対策値を下回る結果が得られた。打撃力については実用的なレベルではないものの、砂の締め固めが可能であることを確認した。今後は、本報の結果を踏まえて、打撃力の増大を図るため、実用的な試作機の開発を行う予定である。

最後に、本研究は科学研究費補助金基盤研究(C)（課題番号24560262）、および同じく基盤研究(C)（課題番号15K05868）の援助のもとに実施したものである。ここに記して謝意を表する。

参考文献

ランキング形式による構造損傷評価法の提案
盆子原 康博 a・近藤 孝広 b・花内 勇也 c・濵畑 貴之 d

A Ranking Approach to Estimating Structural Damages

Yasuhiro BONKOBARA, Takahiro KONDOU, Yuya HANACHI, Takayuki HAMAHATA

Abstract

近年、建物や構造物の安全性を診断するために、経年劣化や地震等による損傷の部位やその程度を検出できる構造ヘルスモニタリング技術が注目されている。主な手法として、超音波などを利用して探傷を行う非破壊検査法（ローカルモニタリング）や、損害後の動的データの測定結果を基に、逆解析により部材の特性値を求める損傷同定解析法（グローバルモニタリング）がある。前者は一部材ごとの局所的な損傷を直接探傷する場合に適しており、後者は構造全体に対して部材を最小単位として損傷探索を行う場合に適している。これらの特徴から、多数の部材で構成される構造物を検査対象とする場合には、まず損傷同定解析法を適用して損傷箇所をある程度まで絞り込み、その後、超音波探傷などで局所的に損傷箇所を検出することが効果的であると考えられる。さらには、損傷箇所を絞り込んだ後に、その箇所に対する損傷同定解析法を用いて適用することで、非破壊検査をほとんど行うことなく損傷を精度良く検出することも期待できる。これが可能ならば、構造ヘルスモニタリング技術への寄与は極めて大きいものになる。ただし、そのためには、損傷同定解析法によって損傷箇所を精度良く検出することが必要不可欠である。このような観点から、著者らは、実用的で高精度な損傷同定解析を見直し実現する解析法の開発を行っている。

損傷同定解析法の採用では、観測雑音を考慮した離散時間確率・変数型のカルマンフィルタを用いた損傷同定解析法について検討を行った。カルマンフィルタのアルゴリズムでは、観測雑音を考慮した離散時間確率・変数型のカルマンフィルタを用いて観測対象をモデル化する。そして、損傷によって生じる振動特性（固有振動数）の変化を観測データとして、カルマンフィルタ計算により損傷対象の状態量の推定値を逐次計算する。その際、状態量の推定値に対する固有振動数を計算するために自由振動解析を繰り返し実行する必要があるが、本研究では一般化伝達剛性係数を導入することによって、自由振動解析の計算コストを大幅に低減することに成功した。

一方、損傷同定解析法を精度よく実行するためには、観測データを集めず多く用いる必要がある。しかしながら、一般的な構造物に対して低次から高次にかけて固有振動数を精度良く測定することは実際には困難である。この問題に対して既報 dでは、対象構造物に付加質量を与えた構造変更モデルを利用して、比較的測定が容易な低次の固有振動数を複数のモデルで測定し、これらを観測データとして用いることで高精度な損傷同定が可能であることを示した。しかしながら、実際に解析対象の構造を変更するのは容易なことではなく、実用性の面で問題がある。

そこで本報では、比較的精度高く測定可能な低次の固有
振動数だけを用いる方法として、ランキング形式による損傷評価法を提案する。この手法では、損傷箇所や損傷程度を求めるのではなく、構造物の損傷箇所を検出するために最低限必要な情報として、部材が損傷を有する可能性を示す順位付け（ランキング）を求ることを目的とする。本報では、最も単純な直線状配管を対象としてランキング形式による損傷評価法のアルゴリズムの定式化を行うとともに、具体的な損傷実験と数値計算の結果に基づいて提案する手法の有効性を検証する。

2. 直線状配管モデル

2.1 実験装置
本報では、図1に示すような直線状配管を実験対象とし、提案する計算アルゴリズムの有効性について検証する。对象とした配管は、外径25.5 mm、内径23.0 mm、長さ1,600 mmの鋼製一様な中空丸棒（電線管E25）である。配管の両端にはアルミ製のフランジが設置されており、配管はそのフランジに取り付けたワイヤーによって天井から水平に吊り支持されている。ワイヤーによる水平方向の支持剛性は配管の剛性に比べて十分に小さいため、数値計算においてはその支持条件を自由端とすることができる。

フィルタ計算で観測データとして利用する固有振動数を測定するために、配管の一部に損傷を与えて打撃試験を行った。その際、配管に損傷を与える範囲は左端から中央までとした。これは、配管が左右対称である場合、損傷が左右対称の位置のどちら側にあるのか分からず、同定が困難となるためである。この検討では、図1に示すように対象とする範囲を8つに等間隔で区分した。便宜上、以下でこれを領域と呼び、左側から順番にそれぞれ番号1～8を付す。本実験では、同一の配管を9本用意して、そのうち1本は無損傷とし、残りの8本には領域1～8の1カ所に損傷を与えたものを1本ずつ用意した。損傷を与える方法としては、図2に示すように、領域全体に等間隔に直径4.0 mmの貫通穴を開けた。なお、使用した9本の配管では、無損傷時に測定した固有振動数はいずれもほぼ一致していることを確認している。

2.2 打撃試験結果
9本の配管をそれぞれ水平に設置した後、水平面内曲げ振動を対象として打撃試験を行い、加速度ピックアップとFFTアナライザを用いて固有振動数の測定を行った。本実験では、1,600 Hzまでの範囲で振動数の測定を行ったが、いずれの配管でも1次から7次までの固有振動数を測定することができた。一例として、無損傷の配管と領域7を損傷させた配管の固有振動数の測定結果を表1に示す。各数値とも、損傷後に固有振動数が低下しており、変化率はいずれも1.0％以下であった。その他の配管においても同様の傾向が確認された。

<table>
<thead>
<tr>
<th>No.</th>
<th>Non-damaged [Hz]</th>
<th>Damaged at section 7 [Hz]</th>
<th>Amount of change [Hz]</th>
<th>Ratio of change [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>56.875</td>
<td>56.375</td>
<td>-0.50</td>
<td>-0.88</td>
</tr>
<tr>
<td>2nd</td>
<td>157.625</td>
<td>156.875</td>
<td>-0.75</td>
<td>-0.48</td>
</tr>
<tr>
<td>3rd</td>
<td>309.125</td>
<td>308.125</td>
<td>-1.0</td>
<td>-0.32</td>
</tr>
<tr>
<td>4th</td>
<td>510.25</td>
<td>507.25</td>
<td>-3.0</td>
<td>-0.59</td>
</tr>
<tr>
<td>5th</td>
<td>757.50</td>
<td>756.125</td>
<td>-1.375</td>
<td>-0.18</td>
</tr>
<tr>
<td>6th</td>
<td>1052.50</td>
<td>1046.75</td>
<td>-5.75</td>
<td>-0.55</td>
</tr>
<tr>
<td>7th</td>
<td>1384.25</td>
<td>1379.25</td>
<td>-5.0</td>
<td>-0.36</td>
</tr>
</tbody>
</table>
3. ランキング形式による損傷評価法

本研究では、なるべく少ない観測データを用いて配管中の損傷箇所を精度良く検出するために、ランキング形式による損傷評価法（以下、ランキング法と呼ぶ）を新たに提案する。既報1）で提案した通常のフィルタ理論による損傷同定計算手続き（以下、従来法と呼ぶ）では、観測データに基づいてフィルタ計算を行うことにより各領域の状態量を同定し、その状態量の変化から損傷箇所および損傷程度が求められる。ただし、十分な計算精度で状態量を求めることは、多くの観測データが必要となる。これに対してランキング法では、具体的に損傷箇所や損傷程度を求めることなく、各領域に損傷有する可能性を示す順位（ランキング）を得ることを目的とする。このランキングから、損傷箇所の個数やその程度は分からないものの、損傷可能性が高い領域はランキングの上位に求められる。本稿では、ランキング法の具体的な計算手続きについて述べる。

3.1 解析モデル

ランキング法では、従来法と同じくカルマンフィルタの計算手続きを適用して状態量の推定値を逐次計算する。解析にあたり、配管の領域ごとの損傷程度を線形（線弾性係数）変化によって表現するものとする。ただし、簡単のためには損傷後の線弾性係数は領域内で一定に変化し、損傷によるその他のパラメータの変化は無いものとする。いま、配管が左右対称であるため、その左半分が n 個の領域に分けられているとする。また、配管の損傷箇所の線弾性係数を E、損傷後の線弾性係数を E_i $(i=1,2,\ldots,n)$ で示す。このような、各領域の損傷程度を示す損傷係数 z_k による状態ベクトル z を次のように定める。

$$z_{k+1} = z_k + K_k \left[y - M_k z_k \right] \quad (k = 0, 1, 2, \ldots) \quad (5)$$

カルマンゲイン:

$$K_k = R_k M_k ^T \left[M_k R_k M_k ^T + Q \right]^{-1} \quad (6)$$

推定誤差共分散行列:

$$R_{k+1} = R_k - K_k M_k R_k \quad (7)$$

初期条件:

$$z_0 = [1.0, 1.0, \ldots, 1.0]^T, \quad R_0 = I \quad (8)$$

ここで、K_k はカルマンゲイン、R_k は推定誤差共分散行列、
3.4 ランキング法の計算手続き

損傷同定は逆問題なので、一度のフィルタ計算によって各領域の損傷係数を正確に求めることが難しい。そこで、既報のように損傷係数の計算条件を様々に変更しながら複数回のフィルタ計算を行い、何らかの方法でその平均を取るのが良いと考えられるが、その具体的な手続きを含めて、妥当性については明確には分かっていない。そこで本研究では、得られた結果から有意な情報を得る手法としてランキング法の一連の手続きを考案した。ランキング法では、測定され比較的容易に低次の固有振動数のみを用いて損傷係数を検出することを目的としている。まず、少ない観測データからより多くの情報を得るために、損傷係数の計算条件を種々変更してフィルタ計算を複数行することで、計算条件ごとに得られた結果を総合的に評価し、損傷可能性が低い領域を1つずつ順番に決定することで、最終的に各領域が損傷を有する可能性を示すランキングを得る。具体的な計算手順は次の通りである。（1）3.1節で述べたように、損傷の有無を調べる範囲をN個の領域に分割し、それぞれ損傷係数z(i,i)を計算する。（2）損傷の有無を調べた後、順番に損傷係数の計算を行ってフィルタ計算を行う。その際、各領域のうち1つの領域の損傷係数を1.0（正常値）に固定し、その他の領域を対象としてフィルタ計算を行う。そこで、領域jの損傷係数を正確に固定して求められた領域iの損傷係数をz(i,j)とし、z(i,j)からz(i,j)までの平均値を状態ベクトルをz(j)とする。この値は、損傷係数の計算結果に含まれている。これにより、損傷係数をて状態を対象として損傷可能領域を求めることができる。手順(3)によって得られた状態ベクトルz(l)～z(n)を複数回行う。その際、損傷可能性が高い領域を1つずつ順番に決定する。これはランキング法の中で最も重要な手続きであり、その具体的な評価法については3.5節で述べる。手順(3)によって得られた領域での損傷係数が低い領域を1つずつ順番に決定する。これにより、損傷係数の計算結果に含まれている。これにより、損傷係数をて状態を対象として損傷可能領域を求めることができる。手順(3)によって得られた状態ベクトルz(l)～z(n)を複数回行う。その際、損傷可能性が高い領域を1つずつ順番に決定する。これにより、損傷係数をて状態を対象として損傷可能領域を求めることができる。手順(3)によって得られた状態ベクトルz(l)～z(n)を複数回行う。その際、損傷可能性が高い領域を1つずつ順番に決定する。これにより、損傷係数をて状態を対象として損傷可
損傷係数の計算条件

損傷係数を正常値 1.0 に固定して得られた推定値 \(z(k) \) (\(i = 1, 2, \ldots, n \)) は、平均値 \(\bar{z} \) とは異なる値を取るため、\(s(k) \) は他と比べて大きな値となるやすい。

(3) 次式のように \(s(j) \) の総和 \(s(j) \) を求める。

\[
s(j) = \sum_{i=1}^{n} (z(j) - \bar{z})^2 \tag{10}
\]

この値が最大である推定値 \(z(j) \) が誤った前提で計算された可能性が高いため、\(s(j) \) が最大となる領域 \(j \) の損傷係数を固定値としたときの結果を、次の手順(4)で行う評価値の計算から除外する。

(4) 収束結果に対して、手順(3)により \(s(k) \) が最大となった場合、その一行を除外して、総に並べた損傷係数の平均値を計算する。このとき、評価値 \(\bar{z} \) は次式のように表すことができる。

\[
\bar{z} = \frac{1}{n-1} \sum_{j=k}^{n} z(j) \tag{11}
\]

損傷が小さい領域ほど損傷係数の値は大きくなることから、手順(4)で求めた評価値 \(\bar{z} \) が最大となる領域を損傷可能性が最も低いものと決定する。

上述の評価を繰り返し行い領域を一つずつ評価対象から除外していく過程で、残りの領域が 2 つになった場合には、\(s(j) \) が最大となる行を収束結果から除く操作は必要ないため、手順(1)から手順(3)を省略する。なお、上述の評価法では最終的に残った 2 つの領域について損傷可能性を評価することはできないが、これは以下の手順に従って順位付けを行い、1 位となる領域（最も損傷可能性が高い領域）を決定する。

3.6 損傷係数の上限値および下限値

フィルタ計算では、損傷係数が無損傷時の値である 1.0 よりも大きな値で収束することがあるが、これは明らかに間違った解である。そこで、フィルタ計算の過程で損傷係数が取りうる値に制限を設けるが、上限値を 1.0 とすると過度な制限となりフィルタ計算中の損傷係数の推定が安定しないため、次のように上限値と下限値を設定する。

\[
0.1 \leq z \leq 2.0 \tag{12}
\]

フィルタ計算の過程で損傷係数の推定値が式(13)の範囲を超える値となった場合には、強制的に値を上限値または下限値に戻す。このような手続きを行ったとき、フィルタ計算の過程で推定値の推移が何度も上限値または下限値に到達することがしばしば生じる。この場合には、損傷係数の推移が不安定であると判断して、推定値が一定回数以上上限値または下限値に達した段階で、その計算で得られる推定値は評価値の計算から除外する。さらに、フィルタ計算が上限回数達成された場合においても、推定値の変動が一定値以上であれば評価値の計算から除外する。この手続きにより、安定した推移を経て得られた推定値のみを用いて各領域の損傷可能性を評価することができる。

4. 数値計算結果および考察

本章では、具体的な数値計算結果に基づいて従来法とランキング法の性能比較を行う。2章で述べたように、直線状構造の左半分に8個の領域を設け、それぞれの領域に損傷を与えた 8 本の配管と無損傷の本の配管を対象として、打撃試験を行った。その結果、いずれの配管においても 1 次から 7 次までの固有振動数を測定することができた。以下では、損傷を与えた 8 本の配管を対象として、測定した損傷前後の固有振動数の変化率を観測データとして使用し、両手法により損傷同定計算を行った。

4.1 従来法による計算結果

まず、従来法を適用して、8 本の配管に対して損傷同定計算を行って各領域の損傷係数を求めた。本検討では、与える観測データの個数が計算結果に及ぼす影響について調べた。得られた結果を表 3～5 に示す。このうち、表 3 は観測データの個数を 1 つから 3 次までの 3 個とした場合の結果、表 4 は 1 つから 5 次まで 5 個とした場合の結果、表 5 は 1 つから 7 次までの 7 個とした場合の結果である。表 3 では、フィルタ計算が収束したとき、あるいは計算が上限回数である。なお、損傷箇所に相当する損傷係数を赤、最小値を黄色で囲んで記している。損傷箇所の損傷係数の推定値は、損傷箇所の損傷係数が 1.0 以下となり、損傷の無い領域については正常値 1.0 となるような計算結果が得られていることが望ましい。このような観点から、得られた結果を検証する。まず、表 3 では、いずれの結果も損傷係数が小さくなるのが損傷箇所だけでなく、損傷箇所よりも小さな値を取る正常領域や、正常値 1.0 より大きな値を取る正常領域が存在している。その部位、表 3 での赤字の網掛け位置が一致しない結果となっている。損傷箇所の損傷係数が比較的小さな値をとっているものの、フィルタリング回数が上限値に達している。このような観点から、観測データを 3 個だけ用いた場合では、損傷箇所の損傷係数を以下表 3 の結果を確認し、損傷箇所の損傷係数が小さくなっている表 3 の結果を確認し、損傷箇所の損傷係数が大きくなっている表 3 の結果を確認する。
表3. 1次から3次までの固有振動数を用いて求めた損傷係数。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>Damage coefficient</th>
<th>Number of filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
<td>0.993</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>0.989</td>
</tr>
<tr>
<td>3</td>
<td>1.002</td>
<td>0.979</td>
</tr>
<tr>
<td>4</td>
<td>0.992</td>
<td>0.968</td>
</tr>
<tr>
<td>5</td>
<td>1.001</td>
<td>0.998</td>
</tr>
<tr>
<td>6</td>
<td>1.008</td>
<td>1.012</td>
</tr>
<tr>
<td>7</td>
<td>1.002</td>
<td>1.005</td>
</tr>
<tr>
<td>8</td>
<td>1.001</td>
<td>0.998</td>
</tr>
</tbody>
</table>

表4. 1次から5次までの固有振動数を用いて求めた損傷係数。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>Damage coefficient</th>
<th>Number of filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>1</td>
<td>0.991</td>
<td>0.986</td>
</tr>
<tr>
<td>2</td>
<td>0.946</td>
<td>0.947</td>
</tr>
<tr>
<td>3</td>
<td>0.983</td>
<td>0.957</td>
</tr>
<tr>
<td>4</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>5</td>
<td>0.997</td>
<td>1.003</td>
</tr>
<tr>
<td>6</td>
<td>0.993</td>
<td>0.991</td>
</tr>
<tr>
<td>7</td>
<td>1.013</td>
<td>1.007</td>
</tr>
<tr>
<td>8</td>
<td>0.983</td>
<td>1.006</td>
</tr>
</tbody>
</table>

表5. 1次から7次までの固有振動数を用いて求めた損傷係数。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>Damage coefficient</th>
<th>Number of filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z_1</td>
<td>z_2</td>
</tr>
<tr>
<td>1</td>
<td>0.897</td>
<td>0.965</td>
</tr>
<tr>
<td>2</td>
<td>0.921</td>
<td>0.935</td>
</tr>
<tr>
<td>3</td>
<td>1.056</td>
<td>0.992</td>
</tr>
<tr>
<td>4</td>
<td>0.898</td>
<td>1.035</td>
</tr>
<tr>
<td>5</td>
<td>0.984</td>
<td>1.003</td>
</tr>
<tr>
<td>6</td>
<td>1.004</td>
<td>1.009</td>
</tr>
<tr>
<td>7</td>
<td>1.021</td>
<td>1.001</td>
</tr>
<tr>
<td>8</td>
<td>0.949</td>
<td>1.027</td>
</tr>
</tbody>
</table>
表6. 1次から3次までの固有振動数を用いて求めたランキング結果。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

表7. 1次から5次までの固有振動数を用いて求めたランキング結果。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

表8. 1次から7次までの固有振動数を用いて求めたランキング結果。

<table>
<thead>
<tr>
<th>Damaged section number</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
ていることが分かる。7個の観測データを用いた表5の結果では、損傷箇所の損傷係数が10%程度減少しているものが多く、表中の赤字と黄色の網掛けの位置もよく一致しており、損傷箇所を見出すやすい結果となっている。ただし、表5の結果においても、領域2や領域4に損傷を与えた結果では、赤字と黄色の網掛けの位置は一致しており、特に領域4に損傷を与えた結果では、損傷箇所から離れた領域1の損傷係数は最も小さくなっている。

以上のように、従来法では観測データの個数が多いほど精度良く損傷を検出することが可能となっているが、観測データを7個用いた場合でも、損傷箇所が確実に検出できないわけではないことが分かる。

4.2 ランキング法による計算結果

次に、ランキング法を適用して、8本の配管に対する損傷可能性を示すランキングを求める計算を行った。本検討では、前節と同様に揮発観測データの個数が計算結果に及ぼす影響について調べた。得られた結果を表6～8に示す。このうち、表6は観測データの個数を1次から3次までの3個とした場合の結果、表7は1次から5次までの5個とした場合の結果、表8は1次から7次までの7個とした場合の結果である。表中の値は、順位付けされた領域の番号であり、順位付けのある損傷係数を有する可能性が高くなる。右側にあるほど損傷を有する可能性が低いことを示している。なお、損傷箇所に相当する領域の番号は赤字で記している。

3.5節で述べたように、ランキング法では、最終的に残った2つの領域については、損傷可能性の優劣を付けることができない。このため、単一損傷の場合は、損傷箇所に相当する領域が2個以内に順位付けされることが望ましい。このような観点から得られた結果をみると、いずれの結果も損傷箇所に相当する領域が2個以内に求められる。このことから、3.5節で述べた状態ベクトルの評価法が適当であると言える。従来法では、7個の観測データを用いた場合でも損傷箇所を同定できないことがあったが、ランキング法によれば観測データの個数を3個でも十分精度良く損傷箇所を検出することが可能である。

なお、ランキング法で得られるランキングは、領域が損傷を有する可能性を示すものであり、順位が高いほど損傷の程度が大きいものではない。求められたランキングでは、ランキンジ有する領域が全てランキングの上位に位置づけられ、無損傷の領域がそれに続いて順位付けされている。したがって、どこまでの領域が実際に損傷を有しているのかについて別途調べることが必要となる。この問題の対策としては、超音波探傷などのローカルモニタリングを併用することが考えられる。すなわち、ランキング上位の領域から順に検査を行って損傷の有無を確認し、損傷の無い領域が確認された段階で、それ以後の領域には損傷が無いものと判断できる。このようにすれば、検査する領域を最小限にできるため、ローカルモニタリングによる損傷検査を効率的に実行できる可能性がある。

5. 結論

構造物の損傷箇所を効率的に検出する手法として、ランキング法による損傷評価法を新たに提案した。そして、直線状配管を対象として、実際に損傷を与えたときの固有振動数を測定し、その結果を用いて実際に損傷同定計算を行うことにより、提案手法の有効性について検証した。その結果、カルマンフィルタのアルゴリズムによって損傷係数を計算する従来の方法では、観測データを多く用いても損傷箇所を同定できないこともあったが、提案手法によれば、損傷を有する可能性を示すランキングだけを求めることがなり、少ない観測データでも精度良く損傷箇所を推定できることを確認した。今後は、損傷の与え方の違いによる影響や複数損傷を有する場合に対する有効性について検証するとともに、得られたランキングから損傷箇所および損傷程度をより詳細に検出すための計算手続きについて検討する予定である。

参考文献

2) 登坂 宣好, 大西 和美, 山本 昌宏, 逆問題の数理と解法(偏微分方程式の逆解析), pp. 251-269, 東京大学出版会, 1999.
液滴エピタキシー法により作製した GaAs QDs の発光再結合特性

岩元 杏里 a)・石塚 史典 a)・大塚 大介 b)・間野 高明 c)・碇 哲雄 d)・福山 敦彦 e)

Investigation of Radiative Recombination of GaAs Quantum Dots Produced by Droplet Epitaxy

Anri IWAMOTO, Fuminori ISHITSUKA, Daisuke OHORI, Takaaki MANO, Tetsuo IKARI, Atsuhiko FUKUYAMA

Abstract

We investigated a radiative recombination in the self-assembled GaAs quantum dots (QDs) structure embedded by Al0.13Ga0.87As barrier material on the GaAs (311)A substrates formed by a droplet epitaxy method by using photoluminescence (PL) method. The quantum-well layer was inserted under the QDs structure to thicken the QDs height; hereafter we called an effective height (EH). The PL peak originatied from QDs showed red-shift and increase in the signal intensity with increasing the thickness of EH. A full width at half maximum also narrowed. As the results, the radiative recombination within the inserted quantum well became dominant. From the temperature dependent PL measurements, the temperature coefficient estimated from the PL peak energy between 60 and 140 K for the QDs sample without quantum-well layer was steeper than thick EH samples. This implied that QDs had a considerable variation in the diameter. Since a QD with large diameter has a weak carrier confinement to lateral direction, photogenerated carriers can escape from QDs and recombine within quantum-well layer. It is concluded that radiative recombination within quantum-well layer was dominant because of weak carrier confinement of present QD.

Keywords: Quantum dots, GaAs, AlGaAs, Droplet epitaxy, Photoluminescence

1. はじめに

量子ドット(QD)の構造は、電子の運動量が 3 次元方向から抑制されることで状態密度が離散化する。QD レーザーダイオードは、高い光電流、変調特性、スペクトル特性などに優れているため、実用化に向けて様々な取り組みが行われている。しかし、QD の体積は非常に小さいため、それぞれの QD が発光できる光量も限られているという問題がある。そのため、QDs の利点を生かしつつ、発光強度の向上を図るには、高密度化が不可欠である。一般的な QDs の作製法に、格子定数差を利用し QDs を成長させる Stranski-Krastanov(SK) モードがある。この方法では、QDs の数を増加させるために、GaAs 表面に Sb を照射するなどの様々な技術が提案されている。しかし、SK モードは格子定数差を利用しているため、QDs を表面に制御することが目的である。実際の QDs の数を増加させるため、GaAs 表面に Sb を照射するなどの様々な技術が提案されている。しかしこの方法は QDs を表面に制御する方法であるため、精密な制御が必要である。また、QDs の数を増加させるためには、量子ドットからの発光波長の制御を意味するため、重要なお題目となっている。

本研究では液滴エピタキシーを用いて作製した量子ドットの大きさを調整するために、厚さの異なる GaAs 量子井戸(QW)層を形成し、その上に GaAs QDs を作製した。これは、現状では QDs の大きさの制御が困難であるため、GaAs QW 層の厚さを変えることで実効的な高さを変更させることで QDs の大きさを制御することが目的である。QW 厚さを変えた試料を 3 つ用意し、フォトミネッセンス (Photoluminescence: PL) 法を適用することで、QDs の実効的な高さの違いが発光再結合過程に与える影響について議論した。
2. 実験

2.1 サンプル詳細

本研究では、3つのGaAs QDs試料を、分子線エピタキシー（Molecular beam epitaxy: MBE）法を用いた液滴エピタキシー法により作製した。図1に示した試料の概略図を示す。試料の作製手順は以下の通りである。

1) 半絶縁GaAs(311A)面基板上に基板温度610°Cで400 nmのGaAs層を成長
2) Al0.33Ga0.67Asを610°Cで100 nm成長
3) 0 nm、1 nm、2 nmのGaAs層を610°Cで成長
4) 200°Cで4 ML(Mono Layer)のGaを供給しGa液滴を形成
5) 200°Cで1.0×10⁻⁵TorrでAsを供給しGaAsのQDsを形成
6) 400°Cで4 ML(Mono Layer)のGaを供給しGa液滴を形成
7) Al0.33Ga0.67Asを5 ML供給
11) 手順4)〜6)を繰り返す

手順3において、障壁層とGaAs QDsの間にそれぞれ1および2 nmのGaAs井戸層を成長することで、GaAsの実効的高さを変化させた試料を作製した。本研究において、実効的高さをEffective Height (EH)と定義し、試料をそれぞれEH+0、EH+1、EH+2と呼称する。原子間力顕微鏡(AFM)によってGaAs QDsの大きさ、すべての試料において直径約30 nm、高さ約2 nm、面内密度は10¹¹ cm⁻²であることが確認された。

2.2 実験方法

PL測定は、励起光源に波長473 nmの半導体レーザーを用い、試料表面のGaAs QDs側から照射した。表面からの発光再結合信号を電荷結合素子(CCD)検出器で検出した。励起光強度は6.5 mWであり、測定温度は4.3~140 Kまで変化させた。

3. 実験結果および考察

図2に、全試料の4.3 KにおけるPLスペクトルを示す。全ての試料において、1.52 eV付近にGaAsのバンドギャップ(Eg)起因の発光ピークが観測された。図1に示す試料構造より、GaAs QDs層より下に位置するGaAs層及びGaAs基板からの発光であると考えられる。したがって、全試料におけるGaAs起因の発光ピークは同じ起因と判断し、これを基準として信号強度の規格化を行った。さらに図中にAl0.33Ga0.67AsのEg(1.97 eV)を示した。これらの結果から、GaAsとAl0.33Ga0.67AsのEg間の検出されたPL信号はQDs中の量子準位からの発光であると示唆された。そこで、各試料のピーク位置に着目すると、EH+0からEH+2へと実効的高さが増加するにつれて、ピーク位置が低エネルギー側へシフトした。これは、QDsの実効的高さが増加することで、量子閉じ込め効果が弱まり、量子準位の遷移エネルギーが低下したためと考えられる。また、ピーク幅も実効的高さを増加すると細くなった。より詳細な議論を行うために、これらのピークにガウス関数をフィッティングして各ピークのエネルギー位置および半値幅(Full Width at Half Maximum: FWHM)を見積った。
定したQDs試料はAFM観測から直径約30 nmであると見積もりられた。したがって、面内方向へのキャリア閉じ込めが不十分で、光励起キャリアを理想的な3次元で閉じ込められず、2次元構造であるquantum wellの状態密度関数（ステップ関数）を反映した形状となったと理解できる。同様に、QDs構造の下にQW層を挿入したEH+1、EH+2試料においてもピークフィッティングを行ったところ、非対称なピーク形状を示した。さらに各試料で面積強度を算出することで、EH+0試料の面積強度を基準とした他の試料の面積強度比を求めた。表1に全試料の4.3 Kにおけるピーク位置及びそのFWHMと面積強度比。

<table>
<thead>
<tr>
<th>試料</th>
<th>Peak位置 (eV)</th>
<th>FWHM (meV)</th>
<th>面積強度比</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH+0</td>
<td>1.77</td>
<td>68</td>
<td>1.0</td>
</tr>
<tr>
<td>EH+1</td>
<td>1.71</td>
<td>42</td>
<td>1.5</td>
</tr>
<tr>
<td>EH+2</td>
<td>1.66</td>
<td>28</td>
<td>43</td>
</tr>
</tbody>
</table>

図4にEH+0試料のPL測定結果の温度依存性。

表4. EH+0 nm試料の4.3 Kにおけるフィッティング例。

図4にEH+0試料のQDs起因のPLスペクトルの温度変化を示す。QDs起因のピークは温度上昇に伴いピーク強度が減少し、そのピーク位置は低エネルギー側にシフトしていることが観測できた。全ての温度において測定された量子準位起因の発光ピークを、図3と同様にガウス関数を用いてピークフィッティングを行った。図5に、各試料のPLピークの温度依存性を示す。图中には、参考として、GaAsのE_gの温度変化を、Varshniの経験式を用いて算出したものを点線で示した。

Varshniの経験式は、

$$E = E_g(0) - \frac{\alpha T^2}{T + \beta}$$

で表される。ここで、$E_g(0)$は各材料の0 K時におけるE_gの値、αは温度に伴ったE_gの变化量(eV/K)、βはデバイ温度(K)、Tは温度(K)である。図示したGaAsの各値は、$E_g(0) = 1.519$ eV、$\alpha = 5.405 \times 10^{-4}$ eV/K、$\beta = 204$ Kであった。

4.3~60 Kまでの低温領域では、すべての試料のピーク位置変化はGaAsの理論的な温度依存性とほぼ同様であった。その一方、60 Kよりも高温では、EH+0試料のピーク位置が急峻に低エネルギー側へとシフトした。そこで、60~140 Kの温度範囲の温度係数(eV/K)を算出し、その数値を図5中に示した。EH+0試料は、他の試料と比較して、大きな温度係数を持つことがわかる。単一QD構造の遷移エネルギーは、QD材料および障壁材料のE_gに依存する。温度変化によって、各材料のE_gはVarshniの経験式に則して変化するので、QD構造の発光遷移エネルギーも、Varshniの経験式から大きく外れることは考えにくい。さらに、EH+1、EH+2試料に関しては、GaAsのE_gの温度係数(-2.9×10^{-4} eV/K)と近い値を示した。ここで表1より、EH+0試料は、EH+1およびEH+2試料と比較して広いFWHMを持つ。これは、発光に寄与したQDsの大きさにばらつきがあることを示唆している。QDs構造は、大きさ
を制御することによって、キャリアの量子閉じ込め効果により発光遷移エネルギーを変化させることができる。すなわち、QDsの大きさにばらつきが生じることで、遷移エネルギーの違うQDsが存在することになり、これにより発光遷移エネルギーを変化させることができる。すなわち、QDsの大きさにばらつきが生じることで、QDs構造中の障壁層から脱出するためのエネルギーに違いが生じることとなる9,10)。したがって、EH+0試料では60~140 Kの温度範囲においても発光に寄与するQDs構造が同一ではないために、見かけ上ピーク位置の温度変化が大きく見積もられたと考えることができる。一方で、EH+1およびEH+2試料は、QW層の挿入により、温度係数がGaAsの計算値に近い値を示した。これは、発光再結合起因がQW層の挿入に強く影響されたことを意味する。以上のことより、EH+0試料は、面内方向の大きさ、つまり直径にばらつきがあり、その影響が温度依存性に出ていることが示唆された。一方で、EH+1およびEH+2試料は、挿入したQW層の影響で、EH+0と比較して温度係数が小さくなった。以上のことより、QDs構造の下にQW層を挿入することで実効的高さを変化させた場合、挿入したQW層の影響が大きく表れた。より詳細な影響解明のために、今後は3次元有限差分法を用いたモデルシミュレーションを行い、計算結果と併せてより詳細に議論を進める。

4. 結論

本研究では、QDs構造の下にQW層を挿入することで、実効的高さを制御したGaAsQDs試料の発光特性を評価した。低温PL測定の結果から、EH+0試料からEH+2試料へと実効的高さを増加させるにしたがって、QDs起因の発光ピークは低エネルギー側へシフトし、FWHMは小さくなり、且つ発光強度は増大した。したがって、実効的高さを制御するために挿入したQW層が、発光再結合に強く影響していることがわかった。さらに、4.3~140 Kの温度範囲でPL測定を実施し、そのピーク位置とVarshniの経験式から期待されるGaAsのE_gの温度係数と比較した。

参考文献
Investigation of Carrier Transport in GaAs-interlayer-inserted Strain-Balanced InGaAs/GaAsP Quantum Well Solar Cells

Hideaki TAKEDA, Tsubasa NAKAMURA, Jianan LU, Kasidit TOPRASERTPONG, Masakazu SUGIYAMA, Tetsuo IKARI, Atsuhiko FUKUYAMA

Abstract

We investigated carrier transport properties in three types of strain-balanced InGaAs/GaAsP quantum well solar cells by using the surface photovoltage (SPV) spectroscopy. First absorbing layer was multiple quantum well (MQW) and second was super-lattice (SL). Last one was GaAs-interlayer-inserted SL structure to relax the strain caused by the lattice mismatch. Distinct SPV signals were observed below the GaAs bandgap energy for all samples. In addition, the SPV signal intensities of SL and GaAs-interlayer samples were larger than that of MQW sample. From the computational calculation by using 3-D nano device simulator, the 1st quantum level of electron (e1) in SL sample and 2nd quantum level of electron (e2) and 1st quantum level of light hole (lh1) in GaAs-interlayer sample were found to form minibands because of the overlapping of wave functions. In these case, carriers can transport by tunneling through minibands without recombination. Since the SPV detects the surface potential change caused by carrier collection, large SPV signal s obtained for SL and GaAs-interlayer samples represented that the carrier transport properties were improved by the formation of miniband. On the other hand, the SPV spectrum of SL sample showed two distinctive peaks corresponding to the mini-Brillouin zone center and edge of e2-miniband. The usefulness of SPV for investigating the carrier transport properties in quantum well solar cells was clearly demonstrated.

Keywords: Quantum-well solar cells, Superlattice, Miniband formation, carrier transport property

1. はじめに

近年、化石燃料の枯渇問題や地球温暖化などの環境問題に加え、原子力発電の安全性が不安視されていることから、安全かつ持続可能なエネルギー供給源の実用化が急務である。その再生可能且つクリーンなエネルギー源として太陽光発電が注目されている。なかでも、太陽光スペクトルの光吸収波長領域が異なる半導体p-n接合を複数組み合わせることで、変換効率の飛躍的向上を図る多接合型太陽電池が提案されている。実際に、InGaP/InGaAs(GaAs)/Geの三接合太陽電池において、約364倍の集光動作で変換効率41.6%を達成しており、更なる高効率化が期待されている。しかしながらこの三接合太陽電池においては、ミドルセルの吸収波長領域が他のトップおよびボトムセルよりも狭いために出力電流が小さくなる。その結果、セル全体の出力電流が、最も小さいミドルセルに律速してしまった電流不整合損失が発生する。そこで、ミドルセルとして通常の半導体p-n接合ではなく多重量子井戸（multiple quantum well: MQW）を挿入したMQW太陽電池が提案されている。異なる禁制帯幅を持つ材料を数nm程度の厚さで交互に積層させて井戸型ポテンシャルを実現している。この井戸型と障壁高さを変化させることで離散化準位を制御することが可能であり、光吸収波長を長波長化して出力電流を増加させる。例えば、英国Imperial Collegeの研究グループが、従来型のInGaP/GaAs二接合タンデムセルのGaAsサブセル中にInGaAs/GaAsP系の歪補償多重量子井戸構造を導入することで、変換効率30.7%（AM 1.5, 54倍集光）を達成したことを報告している。
量子井戸内に形成された光励起キャリアは、熱励起によって井戸外へ脱出し両電極へ到達する。しかしながら、同時に量子井戸の閉じ込め効果により井戸構造内で再結合して消失するために、キャリア収集効率が低下することが課題である。その結果、従来型セルと比較して十分な特性向上が得られない場合が多く、量子井戸挿入の優位性を示すには至っていない。その解決策として超格子（superlattice: SL）太陽電池が考案されている。SLとはMQWの障壁層幅を数ナノメートル程度に薄くした構造である。この結果、隣接する量子井戸の波動関数が重なり合うことによりバンドを形成（ミニバンド化）する。この結果、電子の存在を表す状態密度関数が、MQW特有のステップ関数から二つの特異点（Γとπ点）をもつシグモイド関数に類似した形状へ変化する（図1）。特にSL太陽電池では、光励起キャリアが、形成されたミニバンド内を再結合することなくトンネリングすることでキャリア輸送されるため、太陽電池のキャリア収集効率が飛躍的に上昇することが期待される。

しかしながら、数ナノメートル程度の非常に薄い膜を積み重ねることから、ヘテロ接合界面の蓄積歪による欠陥の発生を避けられない。MQWあるいはSL構造の総合膜厚が非常に薄いため、十分な太陽光吸収を起こすためには、数十程度の積層数が必要となる。MQWやSL構造の形成は困難である。この課題を解決する方法に井戸層と障壁層の間に蓄積歪を緩和する手法がある。特にSL構造では、井戸層を3つの井戸構造とするSL構造では、キャリアの再結合が抑制されるため、キャリア収集効率が飛躍的に上昇することが期待される。

2. 実験

本研究では、n-GaAs基板上に量子井戸構造を光吸収層とするp-i-n GaAs太陽電池試料を準備した。図2に示すように、量子井戸構造膜時にInGaAs井戸層幅を5.1 nmに固定し、GaAsP障壁層幅を7.8と2.0 nmとした試料を準備した。以後、それぞれMQWとSL試料とする。また、3.1 nmのInGaAs井戸層と2.1 nmのGaAsP障壁層の間にGaAs歪緩和層を挿入した試料をinterlayer試料とする。これら量子井戸構造は、3つの試料全てにおいて20周期積層させた。

全ての層は有機金属気相成長法で成長させた。SPV測定は、励起光としてハロゲン光源を分光した単色光をp-GaAs膜側から照射し、試料表面と裏面に蓄積したキャリアによる表面電位変化をITOで検出した。全ての測定は室温で実施した。

3. 実験結果および考察

図3に示すように、各試料のSPVスペクトルを示す。全ての試料で観測された1.43 eV以上の信号は、室温におけるGaAsのバンドギャップ（1.42 eV）と一致したことから、p-GaAs構造を構成するGaAsの電子の存在を示す。さらに、図2に示すように、p-i-n構造においては、キャリアの再結合が抑制されることで、より高エネルギー側の信号が観測される。これら観測された結果から、構成する量子井戸構造が有効に機能していることが示唆された。

4. 結論

本研究では、量子井戸構造を光吸収層とするp-i-n GaAs太陽電池の性能を向上させるための手法を提案し、それを実証することができた。今後は、より高効率化を図ることを目指し、さらなる研究が期待される。
数十程度の積層数が必要となり、良質な収集効率が改善したとの報告がある。
流-電圧特性およびキャリア収集効率測定から、キャリアの結晶品質が向上する。実際に、疑似太陽光照射下での電挿入により、蓄積歪を緩和できるため、障壁層の間に歪緩和層を挿入する手法がある。歪緩和層の成膜が困難である。この課題を解決する方法に井戸層が非常に薄いため、十分な太陽光吸収を起こすためには、及び内部電界を考慮できる有限差分法によるシミュレ特性的特性評価についての報告はない。本研究では、量子構造した詳細なバンド構造計算や形成される量子準位の光学発生を避けられない。

み重ねることから、ヘテロ接合界面の蓄積歪による欠陥の二つの特異点在を表す状態密度関数が、すには至っていない。その解決策として超格子向上が得られない場合が多く、量子井戸挿入の優位性を示課題である。その結果、従来型セルと比較して十分な特性して消失するために、キャリア収集効率が低下することが時に量子井戸の閉じ込め効果により井戸構造内で再結合って井戸外へ脱出し両電極へ到達する。しかしながら、同

図3. 各試料のSPVスペクトル

が輸送されるため、太陽電池が考案されている。

図4. MQWのバンド構造

図5. SLのバンド構造

図6. interlayerのバンド構造
た際のミニブリリアン領域中心 \([\text{e1}(\Gamma)]\) 及び端 \([\text{e1}(\pi)]\) と hh1 間の遷移エネルギー \([\text{e1}(\Gamma)-\text{hh1}]\) と \([\text{e1}(\pi)-\text{hh1}]\) の計算値 \((1.285 \text{ eV} \text{ と } 1.336 \text{ eV})\) に近い値を示した。従って、量子準位 e1 がミニバンド化したことに起因した SPV 信号であると同定した。SL 試料の e1(hh1)-hh1 遷移が MQW や interlayer 試料の e1-hh1 遷移よりも低エネルギー側に観測されたのは、e1 のミニバンド化によって実効的なバンドギャップが減少したためである。

interlayer 試料にのみ観測された 1.38 eV 付近の信号は 2 つのピーク \((1.370 \text{ eV} \text{ と } 1.386 \text{ eV})\) に分離することができた。これらは e1 と lh1 がミニバンド化した際のミニブリリアン領域中心及び端 \([\text{e1}(\Gamma)]\) と \([\text{e1}(\pi)]\) と hh1 間の遷移エネルギー \([\text{e1}(\Gamma)-\text{hh1}]\) と \([\text{e1}(\pi)-\text{hh1}]\) の計算値 \((1.372 \text{ eV} \text{ と } 1.386 \text{ eV})\) と非常に良い一致を示した。つまり、SPV 測定によって lh1 のミニバンド化に起因した SPV 信号であると同定した。

SL 試料の e1(hh1)-hh1 遷移が MQW や MQW-付近の e1(hh1)-hh1 遷移が MQW や interlayer 試料の e1-hh1 遷移よりも低エネルギー側に観測されたのは、e1 のミニバンド化によって実効的なバンドギャップが減少したためである。

1.30 eV 付近の SPV 信号強度に注目したところ、SL 試料では MQW 試料に比べ信号強度が増加した。これは e1 がミニバンド化したことで、形成されたキャリアがトンネル効果により輸送され、結果として光吸収 i 層でのキャリア再結合が抑制されたためと考えられる。一方、interlayer 試料では e1 がミニバンド化していないにも関わらず、SL 試料よりも大きな SPV 信号強度となった。この実験結果は以下のよう
よ解釈することができる。まず、MQW および interlayer 試料において e1(hh1)-hh1 遷移に形成されるキャリアの数が同じであると考えられる。MQW 試料の場合、e1 に光励起された電子は熱エネルギーを得て障壁層上端まで励起され、隣接井戸に移動する。これを繰り返すことでキャリアが輸送され、最終的に SPV 信号となる。当然ながらその途中の量子準位において再結合し消失の可能性が高い。一方、interlayer 試料では、e1 に光励起された電子は障壁層上端よりエネルギーの低い e2 ミニバンドへ熱励起され、トンネリング効果によって量子井戸構造から容易に輸出することができる。結果として SPV 信号強度が大きくなったと考えられる。MQW 試料において e1 がミニバンド化しているが、同様の理由により interlayer 試料において SPV 信号強度が大きくなったと考えられる。以上の結果から、量子準位のミニバンド化はキャリア輸送の効率化に非常に有効であるが、ミニバンドが形成されるエネルギー位置と

4. 結論

本研究では、p-i-n GaAs 太陽電池の光吸収 i 層の量子井戸構造が異なる MQW、SL、interlayer の 3 試料に対して SPV 測定を行い、キャリア輸送について議論した。遷移エネルギーの計算値と SPV ピーク位置を比較したところ、SL と interlayer 試料ではいずれの e1 と lh1 がミニバンド化し、状態密度関数を反映するスペクトル形状に変化し、且つ SPV 信号が増加した。

1.30 eV 付近の SPV 信号強度に注目したところ、SL と interlayer 試料では MQW 試料に比べ信号強度が増加した。SL 試料では e1 のミニバンド化によりキャリア輸送が促進され、一方 interlayer 試料では e1 に光励起された電子が e2 ミニバンドへ熱励起され、量子井戸構造からのキャリア脱出が容易になったことで SPV 信号強度が増加することが分かった。更に、e2 ミニバンドは i-GaAs 層の伝導帯下端よりも高エネルギー側に存在しているため、量子井戸構造層から i-GaAs 層へ移動する際のエネルギー損失が少ない。本研究結果から、キャリア輸送において量子準位のミニバンド化が有効であるが、形成されるミニバンドの量子準位の位置がキャリア輸送効率の低下を及ぼすことが示されました。

謝辞

良質な試料を頂きました東京大学の杉山正和准教授に感謝致します。また本研究の一一部は、NEDO 超高効率・低コスト太陽電池研究開発による委託及び文科省科技研究費(基盤BおよびC)の支援を受けて実施されました。

参考文献

位のミニバンド化はキャリア輸送の効率化に非常に有効号強度が減少したと考えられる。以上の結果から、量子準を熱的に乗り越える必要がある。結果として、表面へ蓄積が減少したためだと考えられる。一方、送され、結果として光吸収したことで、形成されたキャリアがトンネル効果により輸ってきた電子が信号強度に注目した。付近の信号に注目すると、1.30 eVその信号強度の比較からミニバンド形成や歪緩和層挿入は、のミニバンド化によって実効的なバンドギャップと1.419 eVと同定した。この信号が明確に取得されたことが分かった。なお、示した。つまり、πの計算値が大きくなったと解釈することが可能である。容易に脱出することができる。結果として熱励起され、トンネリング効果によって量子井戸構造から電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、电子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられ、アン領域中心及び端間の遷移エネルギーを基にした解析を行った。特に、電子は障壁層上端よりエネルギーの低い場所に光励起された。隣接井戸に移動する。これを繰り返すことで安定したエネルギーレベルの数は同じであると考えられる。
Effect of Light Irradiation on Carrier Mobility of n- and p-Type Si Substrates for Solar Cell Application

Shuya TATEGAMI, Naoki TOKUDA, Kenjiro TAKAUCHI, Tetsuo IKARI, Kensuke NISHIOKA, Atsuhiko FUKUYAMA

Abstract

We carried out the Hall measurements of p- and n-Si wafers to investigate the dominant scattering mechanism under the concentrating sunlight irradiations. Four samples with different carrier concentration were prepared. In this study, the sample temperature was kept constant during the Hall measurements to avoid the effect of temperature-rising. Obtained Hall mobility decreased linearly with increasing the sunlight concentration up to 4.0 times for all samples. Since the ionization ratios of donor and acceptor levels did not change even at 4.0 times sunlight concentration, carriers were not subjected directly to an ionized impurity scattering. To discuss the reason of mobility decrease by the sunlight irradiation, we considered that the photo-generated electrons (Δn) and holes (Δp) affected the net carrier concentrations of n- and p-Si samples. Estimated Δn and Δp increased with increasing the sunlight concentration and Δp was found to be twice as large as Δn. We concluded that decreases of mobility by the sunlight irradiation were due to the increase of both electron and hole concentration. It was also found that when the initial impurity concentration was high, the effect of sunlight irradiation on the carrier mobility was small.

Keyword: Hall measurement, Si wafer, sunlight irradiation, Mobility, Photo-generated carrier

1. はじめに

近年、化石燃料の枯渇や地球温暖化などが問題視され、クリーンな代替エネルギー源の開発が急がれている。その代替エネルギー源の一つが太陽電池であり、特に高効率な多接合型太陽電池が注目されている。n-およびp-タイプの半導体を積層した太陽電池であり、従来の単接合型太陽電池に比べて太陽光吸収波長領域が拡張して変換効率が向上する一方、高い製造コストが課題である。その解決策として、集光技術が注目されている。フレネルレンズや反射鏡などを用いて太陽光を集光してエネルギー密度を増加させることで、1 cm角の小面積な太陽電池であっても十分な発電量を得ることができる。これにより材料の飛躍的削減が期待されている。

図1に多接合型太陽電池の変換効率の積層数依存性を示す。図1から明らかのように、現行の集光型太陽電池では変換効率の実測値が理論値を大きく下回っており、その原因として、集光照射により太陽電池の温度が上昇した結果、バンドギャップが減少することに起因する開発面電圧の減少や、格子散乱因子の増加によりキャリア移動度が減少することに起因する短絡電流の減少が考えられている。このうち後者の、キャリア移動度の減少を実験的に解析した報告はこれまでほとんどなく、そのため、多接合型太陽電池に擬似太陽光を照射しながらHall測定を実施し、その移動度変化から集光動作時に支配的なキャリア散乱機構を明らかにすることは非常に有益である。

本研究では、擬似太陽光照射が可能なHall測定シス
ムを構築し、物性値が既知である Si 基板を用いて光照射時の移動度や光励起キャリア濃度の変化を測定し、太陽電池構造の動作明解に必要なキャリア散乱機構への影響を議論した。

2. 実験
2.1 試料詳細
本研究で用いた試料は、物理定数が既知の単結晶 Si 基板から 7 mm 角の大きさに切り出したものであり、不純物の濃度がそれぞれ異なる n-Si と p-Si の計 4 種類を用意した。試料の詳細を表 1 に示す。Hall 測定を行うにあたっては電極作製が必要であるため、まずアセトンに 10 分間浸すことで脱脂し、10%に希釈したフッ化水素で 40 秒間エッチングして自然酸化膜を除去した。次に Al を真空蒸着させ、n-Si は 300°C で 20 分間、p-Si は 600°C で 5 分間、N2 ガスが充満した状態でアニール処理を行った。最後に、電流-電圧 (I-V) 測定を実施し、各試料ともにオーミック電極が形成されていることを確認した。

<table>
<thead>
<tr>
<th>Sample</th>
<th>面方位</th>
<th>膜厚 (μm)</th>
<th>比抵抗 (Ω・m)</th>
<th>不純物濃度 (cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Si-1</td>
<td>(1 0 0)</td>
<td>634</td>
<td>20.0</td>
<td>2.2×10¹⁴</td>
</tr>
<tr>
<td>n-Si-2</td>
<td></td>
<td>310</td>
<td>1.1</td>
<td>4.5×10¹⁵</td>
</tr>
<tr>
<td>p-Si-1</td>
<td>(1 0 0)</td>
<td>635</td>
<td>21.2</td>
<td>6.0×10¹⁴</td>
</tr>
<tr>
<td>p-Si-2</td>
<td></td>
<td>629</td>
<td>3.8</td>
<td>2.8×10¹⁵</td>
</tr>
</tbody>
</table>

2.2 測定システムの構築
光照照射光源には、連続可変 ND フィルターにて出力を調節することが可能な、高出力キセノンランプを光源とし、ソーラーシミュレーター（朝日分光株式会社 HAL-320）を用いた。本研究で採用した Hall 測定装置（東洋テクニカ社製 ResiTest 8310）には電磁石部分に光導入用の穴が設けてあり、その穴に挿入可能な特注光ファイバーを作製して挿入した。ファイバー出射口から試料までの距離を計測したところ、63 mm であった。その距離を基準とし、光量チェッカー（朝日分光株式会社製 CS-20）で照射光量を確認しながら距離と出力を調節したところ、82 mm かつ 32% で 1.0 sun (=100 mW/cm², air mass 1.5) となった。この条件をもとに 0.0 から 4.0 suns までの照射光量を変化させながら行い、その時の多数キャリアの移動度とキャリア濃度を測定した。測定は全て室温で行った。

2.3 実験方法
本研究では van der Pauw 法を用いて Hall 測定を実施した。前述した手法により、直径 φ 1 mm のオーミック電極を試料表面の四隅に作製した。測定は印加電流と印加電圧 (V) 測定を別々に正負反転させながら Hall 起電圧を測定した。印加電圧は 0.43 T であった。擬似太陽光を照射しながらの Hall 測定は、0.0 (暗状態) から 4.0 suns までの照射光量を変化させながら行い、その時の多数キャリアの移動度とキャリア濃度を測定した。測定はすべて室温で行った。
内部の温度が一定になるように冷却機の温度制御機能を動作させて行った。しかしながら、その際の温度センサーは試料を設置するコールドフィンガーの裏側に位置しており、試料表面側からの集光照射によって一時的に試料温度が上昇する可能性を否定できない。既に述べたように、図2から試料温度を制御せずに4.0 sunの光を照射したときの温度上昇は1時間で6.4 Kであった。そこで、測定誤差を考慮して8.0 K上昇させた時の移動度の減少率を以下の式(1)と(2)から算出した。

$$\mu_L(T) = \alpha(m^*)^{5/2}T^{-3/2}$$

$$\frac{\mu_L(300) - \mu_L(308)}{\mu_L(300)} \times 100 = A$$

ここで、$$\mu_L$$は格子散乱因子による変化した移動度、$$\alpha$$は物質に依存する定数、$$m^*$$は有効質量、$$T$$は絶対温度である。$$A$$が求める減少率である。計算した結果、移動度の減少率は3.8%と算出された。つまり、8.0 K上昇させた時の移動度の減少率よりも、4.0 suns照射に伴う移動度の減少率の方が大きく、温度上昇による格子散乱因子の増加では本実験結果を説明出来ないことがわかった。このことから、更なる減少の原因を考える必要がある。可能性のある原因として光励起キャリアの増加がある。つまり、照射された太陽光エネルギーをSiが吸収することで電子と正孔が同時に生成され、暗状態で支配的な多数キャリア（例えばn-Siでは電子）のHall移動度に影響を及ぼした可能性がある。そこで、含まれる不純物濃度が近いn-Si-2(4.5×10^{13} cm^{-3})とp-Si-2(2.8×10^{15} cm^{-3})について4.0 suns照射時に発生した光励起キャリア濃度（それぞれ$$\Delta n, \Delta p$$）を以下の式(3)により算出した。

$$\Delta n, \Delta p = (\beta \text{ suns 時のキャリア濃度}) - (0 \text{ sun 時のキャリア濃度})$$

ここで、$$\beta$$は照射光量であり、1から4の整数とする。算出した結果を図4に示す。照射光量の増加に伴い、両試料の光励起キャリア濃度が増加していることがわかった。ただし、4.0 suns照射下での$$\Delta n$$は5.4×10^{14} cm^{-3}であるのに対し、$$\Delta p$$は1.1×10^{15} cm^{-3}と2倍ほど異なる値が算出された。電子と正孔の光励起キャリアは、同数生成されるはずである。増加量が大きく異なる原因として、光励起キャリアが再結合によって消失する割合が導電性によって異なる可能性や他の散乱因子、例えばイオン化不純物散乱因子が増加したことが考えられる。つまり、太陽光照射によって不純物準位のイオン化率が増加し、それによるイオン化不純物散乱によって移動度が減少する可能性である。この確認のために、ショックレー-チャートを用いて各試料の暗状態での不純物準位（ドナーおよびアクセプター）のイオン化率を算出した。その結果を表2に示す。全試料においてイオン化率はほぼ100%と算出され、光照射によって不純物準位のイオン化率は変化しないことが分かった。つまり$$\Delta n$$と$$\Delta p$$が異なる原因は、イオン化不純物散乱因子の増加ではなく、再結合によってキャリアが消失する割合が異なるためと結論付けることができる。その詳細については、光吸収法や発光、発光再結合過程を測定して議論する必要があり、今後の研究課題である。

<table>
<thead>
<tr>
<th>Sample</th>
<th>不純物濃度 (cm^{-3})</th>
<th>イオン化率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Si-1</td>
<td>2.2×10^{14}</td>
<td>99.95</td>
</tr>
<tr>
<td>n-Si-2</td>
<td>4.5×10^{15}</td>
<td>98.93</td>
</tr>
<tr>
<td>p-Si-1</td>
<td>6.0×10^{14}</td>
<td>99.98</td>
</tr>
<tr>
<td>p-Si-2</td>
<td>2.8×10^{15}</td>
<td>99.92</td>
</tr>
</tbody>
</table>
図3より明らかのように、n-およびp-Siともに不純物濃度が大きい試料の方が、移動度減少の傾きが小さい。つまり初期の不純物濃度が大きいほど、移動度は光照射による影響を受けにくいことが示唆された。これを確認するため、光照射下でのn-SiにおけるHallefficiencyを不純物濃度毎に算出した。Siでは、転位など格子欠陥が多い場合や、極低温の電気伝導の場合を除けば、格子散乱とイオン化不純物散乱因子が支配的である。特に室温では格子散乱が支配的に現れるが、前述のように本研究では温度を一定に制御しているため、移動度減少の要因は格子散乱因子の増加ではない。またイオン化不純物散乱についても、暗状態での各試料の不純物準位のイオン化率はほぼ100%であったため、イオン化不純物散乱因子の増加はないと判断できる。このような条件に対して以下のモデルを立てた。まず、電子移動度や正孔移動度自体に光照射の影響はほとんどないと考え、式(4)に2種類のキャリアが存在する場合のHallefficiency算出式を示す。

\[R_H = \frac{p \mu_h^2 - n \mu_e^2}{e(\mu_h + \mu_e)^2}, \sigma = e(p \mu_h + n \mu_e) \]

ここで、\(R_H \)はHall係数、\(e \)は電子素量、\(\sigma \)は電気伝導率、\(\mu_h \)と\(\mu_e \)は正孔と電子の移動度、\(n \)と\(p \)が電子と正孔のキャリア濃度である。暗状態の場合、n-Siでは電子のみが存在すると仮定する。光照射時のn-Siのキャリア濃度が\(n + \Delta n \)と\(p = \Delta n \)となり、式(4)のホール移動度は式(5)となる。

\[\mu^*_{H,n} = \frac{\Delta n \mu_h^2}{\Delta n \mu_h + (n + \Delta n) \mu_e^2} \]

ここで、\(\mu_h \)と\(\mu_e \)はそれぞれ暗状態での電子と正孔の移動度理論値を代表した。式(5)によって算出されたn-SiのHall移動度の計算結果を図5に実線で示す。ただし、0.0 sun時の値は理論値と等しい値である。図からわかるように、不純物濃度が増加すると、太陽光照射による移動度の減少量が小さくなることがわかった。図5にはまた、式(5)より計算した4.0 suns照射による移動度の減少率を白丸と黒丸でプロットした。黒丸が本研究で使用したn-Si試料の不純物濃度に相当する値で計算した結果であり、n-Siとp-Siでそれぞれ23.0と4.0%と算出された。残念ながら実験結果と絶対値は一致しなかったが、不純物濃度が大きいほど減少率が小さくなるという同様の傾向が確認できた。以上の結果より、不純物濃度が大きい試料ほど光照射の影響を受けにくいことが判明した。

3) 高橋 達也: 化合物太陽電池, 第 100 回シャープ技報, pp.29, 2010.

硫黄を添加したアルミナ酸ストロンチウム
蛍光体の応力発光特性

鮫原 正裕 a)・小牧 修也 b)・横山 宏有 c)・境 健太郎 d)・前田 幸治 e)

Mechanoluminescence Properties of Sulfur Doped Strontium Aluminate Phosphor

Masahiro EBIHARA, Naoya KOMAKI, Hirosumi YOKOYAMA, Kentarou SAKAI, Kouji MAEDA

Abstract

SrAl2O4: Eu, Dy phosphor added with sulfur were prepared by solid state reaction method. The phosphors are characterized using X-ray powder diffraction (XRD), thermoluminescence (TL), photoluminescence (PL) and mechanoluminescence (ML). It was found that TL grow curve shift to the lower temperature side and the trap level becomes shallower with increasing concentration of sulfur. PL Intensity was decreased with increasing concentration of sulfur added to SrAl2O4: Eu, Dy. ML Intensity increased with increasing sulfur content and decreased after taking maximum value. It was found that addition of small amount of sulfur had an effect of increasing ML Intensity.

Keywords: Mechanoluminescence, Europium, Sulfur, Phosphor

1. はじめに

応力発光 (Mechanoluminescence: ML) は、1990 年代後半に(独)産業技術総合研究所の徐らによって初めて見出された現象である1)。これは微弱な力学的刺激によって繰り返し発光する現象である。この性質を持つ物質の微粒子を塗布あるいは内包することで非接触に力の印加状態を知ることができる。これにより、大規模な構造体から微小な対象まで応力分布を可視化することが期待されている2)。

1990 年代後半に緑色蛍光体 SrAl2O4: Eu (SAOE) で応力発光が報告されてから、数多くの応力発光材料が開発されてきた3)-5)。2002 年に秋山らが SAOE に Dy を添加した蛍光体(SAOED)が非常に高い ML 強度を示すことを初めて発見した6)。その以前から SAOED は長残光蛍光体として広く知られてきたが、近年では応力発光体としての研究報告も多い7)-9)。

応力発光のメカニズムとして提案されているモデルの1 例を図 1 に示す。応力発光プロセスは、励起された電子が伝導帯近傍のトラップ準位 (酸素空孔 V0 など) に捕獲され、外部からの力学的刺激により解放され、発光中心で再結合することにより発光すると言われている10)。ML ではトラップ準位が重要な役割を果たすことから、トラップ準位の数や状態を変化させることができれば ML 強度の増大が期待できる。

そこで、本研究では酸素と同族の硫黄(S)を SrAl2O4: Eu, Dy に添加することで、TL 強度に同族不純物が及ぼす影響を調査することを目的とした。
2. 実験

2.1 実験方法

バルク試料は純度がそれぞれ 99.9%の炭酸ストロンチウム(SrCO₃)と酸化アルミニウム(Al₂O₃)に、Eu 原料として酸化ユーロピウム(Eu₂O₃)、硫化ユーロピウム(EuS)の 2 種類、Dy 原料として酸化ジスプロシウム(Dy₂O₃)、硫化ジスプロシウム(Dy₂S₃)の 2 種類を用い、モル濃度比が Sr₁₋ₓ₋ₓ Al₂O₄ : Euy, Dyz (y = 0.01, z = 0.02) となるように秤量した。フラックスとしてホウ酸(H₃BO₃)を外モルで 1 mol% 加え、原料を十分に混合し 1000 ℃、5 時間焼成を行った。その後、H₂/Ar ガス中で 1150 ℃、5 時間焼成した。バルク試料を厚さ 2mm 程度に切り出し光学測定試料とした。また、焼成した試料を粉末状にし、エポキシ接着剤(Hysol)と重量比が 1 : 1 の割合となるように十分に混ぜ、その後、ガラス板上に塗布し厚さ約 0.2mm の ML 測定用の塗布試料を作製した。

2.2 評価方法

評価は X 線回折(XRD)測定、フォトルミネッセンス(PL)測定、熱ルミネッセンス(TL)測定、応力発光(ML)測定を行った。XRD 測定は PANalytical X'Pert XRD を用いて粉末回折法で測定を行った。PL 測定は He-Cd レーザー(波長325 nm, 20 mW)を励起光源とし、室温で発光スペクトルの測定を行った。TL 測定は奈良先端科学技術大学大学院・物質創成科学研究科の柳田 健之教授の研究室にある装置を用いて測定を行った。試料に UV ランプ(254nm)を 30 秒間照射し、30 秒待機後も昇温速度 1℃/s で試料を加熱しながら測定を行った。測定温度は室温から 400℃の範囲で測定を行った。ML 測定は、市販の測定装置を用いた。なお、測定の追加装備は、文献に示されたものである。測定の詳細は文献を参照。

3. 実験結果および考察

3.1 X 線回折測定

今回作製した試料の XRD パターンを図 2 に示す。図中の一番上は不純物無添加試料、中央は S を 0.58 at.%添加した試料の XRD パターンであり、SrAl₂O₄: ICDD: 01-074-0794のパターンを一番下に示す。この結果より、不純物無添加試料及び S 添加試料は単相の SrAl₂O₄ 結晶と同定した。XRD の結果から算出した格子体積は S の添加量によらずほぼ一定であった。また、EDX 元素分析結果より S の添加量が多い試料ほど S の割合が増加した。これより、試料中に S を添加できたことが確認された。

図 2. 各試料の XRD パターン

3.2 熱ルミネッセンス

図 3(a)に S を添加した SAOED の PL スペクトル、(b)に TL スペクトルを示す。PL スペクトルと TL スペクトルで、どちらも520nmを中心とするブロードなピークを示した。これらのピークは、Eu²⁺の 4f⁵5d⁰ → 4f⁷ の電子遷移によるものと同定した。他の試料でも同様の形状のスペクトルが得られた。

図 4 に TL グロー曲線の S 濃度依存性を示す。同図によ
硫黄を添加したアルミン酸ストロンチウム蛍光体の応力発光特性

3.3 PL 強度と ML 強度

まず各種イオンの添加効果を述べる。図 5(a)に、SAOED の PL 強度を示す。図中の A は Dy 無添加で、さらに A と B は S 無添加、C は S : 0.58 at.%添加した試料である。Dy を添加した試料 B、C は Dy を添加していない試料 A よりも PL 強度が減少した。S を添加していない B を基準として考えると、S を添加した試料 C は PL 強度が減少した。

図 5(b)に同じ試料の SAOED の ML 強度を示す。Dy を添加していない A に比べ、Dy を添加した B、C は ML 強度が大幅に増加した。B を基準として C について考えると、S の添加はあまり ML 強度に変化が見られなかった。

S の添加効果を詳しく見るために図 6 に SAOED の PL 強度の添加濃度依存性を示す。S 濃度の増加に従って PL 強度が減少した。これは S が非発光欠陥として働いた結果と考えられる。

図 7 に ML 強度の濃度依存性を示す。ML 強度は S が約 0.4 at.%の時に最大値をとり、それ以降は減少した。少量の S は ML 強度を増加させる効果があるが、多すぎると効果は無くなった。また、その最大値の濃度は PL 強度が減少し始める濃度付近となった。

これは、S が O と置換し、酸素空孔 Vo に影響を与えた為だと考えた。また、これらの結果を考察すると、TL 測定から得られたように S の添加でトラップ準位が浅くなり、その影響で伝導帯へ励起される活性化エネルギーが減少し、同じ応力に対して発光が強くなったと考えた。S を多く添加すると ML 強度が減少したのは、図 5(a)の PL 測定結果から分かるように、S が非発光欠陥として働いた為だと考えられる。S の過剰な添加により伝導帯からの非発光変移が増加すると、応力によって励起されたキャリアも非発光過程で緩和したと思われる。
4. 結論

固相反応法により不純物として S を添加した SrAl₂O₄ :Eu, Dy を作製し、ML 強度に与える影響を調査した。添加した S の濃度が増加するのに従って ML 強度は増加し、最大値をとった後、減少した。今回の結果より、少量の硫黄の添加は応力発光強度を増加させる効果があることが分かった。

謝辞

本研究を行うにあたり TL 測定において、奈良先端科学技術大学大学院・物質創成化学研究科の柳田健之教授、岡田豪助教の協力をいただいたことに深く感謝いたします。この研究の一部は JSPS 科研費(JP16K05955)の助成を受けた物です。

参考文献

ユーロピウム添加アルミン酸ストロンチウムの組成変化と酸化物添加による発光特性

木津 駿斗a)・前田 幸治b)・横山 宏有c)・境 健太郎d)

Synthesis and Luminescent Properties in Sr Defect and Oxide Doped SrAl2O4：Eu Phosphors

Hayato KIZUa), Kouji MAEDA b), Hirosumi YOKOYAMA c), Kentaro SAKAI d)

Abstract

Eu doped strontium aluminate (SAOE) with Sr defects and oxides (SiO2,PO4,B2O3)，Sr1−x−yAl2O4Eu y (y = 0.01, 0.81 ≤ 1−x ≤ 1.03) and Sr0.99Al2−xSi(B,P)yO4Eu0.01 (0.5 ≤ w ≤ 10mol%) respectively were prepared by solid state reaction. When the cell volume of the S AeEs decreased with decreasing Sr content or adding oxides, mechanoluminescence (ML) intensity increased. The decreasing of the lattice volumes of each sample means the increasing in oxygen vacancies，it seems that oxygen vacancies contributed to the increasing of the intensity of mechanoluminescence.

Keywords: Mechanoluminescence, Oxide, Defect, Europium, Phosphor

1. はじめに

発光体は、省エネルギーなどの観点から興味が持たれ、多様化に伴って、多色化や高輝度化が囲まれている。その発光体の作製において、希土類イオンの添加は長い歴史を持っている。近年、様々なユーロピウムイオン（Eu²⁺）添加発光体を白色LEDの組み合わせによる白色LEDなどが注目を浴びるようになった。

Eu²⁺の発光の特性は4f7→4f7遷移に基づくブロードな発光を示し、添加する母体材料によって発光ピーク波長が300～650nmまで変化する。ユーロピウムを発光中心とするアルカリ土類アルミナ酸塩結晶は、暗中で10時間以降、発光を示し、長時間発光体として利用される。近年では応力発光体としての報告もある。

応力発光とは圧縮、引張などの機械的外力により発光する現象であり、発光源が従来とは異なる新規な発光材料である。この応力発光は独立行政法人産業技術総合研究所の徐らにより見出され、弾性変形領域において可逆的に発光する新規な応力発光材料が開発された。これまで開発された主な応力発光体は、母体結晶としてアルミナ酸塩やケイ酸塩やリン酸塩を用いたものがある。中でも高輝度な応力発光を示すユーロピウムを添加したアルミナ酸ストロンチウムSrAl2O4:Euに注目した。

応力発光のメカニズムは、応力発光体に励起光を照射すると、発光中心である希土類イオンが光を吸収し、伝導帯を経由して電子捕獲準位に励起された電子がトラップされる。トラップされた電子は電気的刺激を加えられることで電子捕獲準位から放出される。この経路は電気的刺激を用いて、応力発光体を再発光させることを試みた。したがって、応力発光体の応力発光強度は、応力発光強度が増大したという報告があるが、詳細はよくわかっていない。

そこで本研究では、母材のSrAl2O4の原料の比率を変えてSr欠陥を導入し、電荷補償により酸素空孔を増加させることを試みた。Sr欠陥系、SrAl2O4結晶構造のフレームワークとされているAlO4四面体の一部を別の分子で置換し、電荷補償と構造的歪みを介して結晶構造を変化させ、電子の捕獲準位に影響を与えることを試みた酸化物添加系の2つの系において研究を行った。

それらの格子半径、MLの組成依存性から、応力発光強度を強くするためのイオンやメカニズムを調べることを目的とした。

2. 実験

2.1 試料作製

原料は炭酸ストロンチウムSrCO3、酸化ユーロピウム(Eu2O3)、酸化アルミナ(Al2O3)、酸化ホウ素(B2O3)、酸化ケイ素(SiO2)、リン酸二水素アンモニウム(NH4H2PO4)を用いた。Sr欠陥試料はSr0.97Al2O4:Euをなるようになる比率をさらにフラックスとしてホウ酸(H3BO3)1mol%を加えた。

これらの組成であるEuがSrサイトに置換すると考えた場合のSr空孔率を、すなわち1−xはSrサイトの占有率を表す。−0.03≦x
作製し、yはEuの添加量で1mol%と固定した。次に、酸化物添加試料はSr0.99Al2-wSi(B,P)wO4:Eu0.01(0.5≦w≦10mol%)となるように秤量した。それぞれ試料を混合し、石英ガラス管に詰め、500~600℃で3~5時間空気中で仮焼きした後取り出し、粉砕後還元雰囲気ガス(95%Ar+5%H2)を流しながら、1000~1150℃で3~5時間本焼きを行った。完成したサンプルを光学測定用に紙やすりで研磨を行い、測定試料とした。応力発光用サンプルは焼成後の試料を粉砕しエポキシ接着剤と混ぜ、ガラス板に厚さ約0.2mm塗布し、厚膜サンプルを作成した。

2.2 評価方法

評価はX線回折(XRD)測定、フォトルミネッセンス(PL)測定、応力発光測定を行った。XRDではPAANalyticalX'Pert XRDを用いて、X線の波長1.5406(Å)、加速電圧45kV、X線管電流40mAの条件で、粉末回折法で測定を行った。PLはHe-Cdレーザー(波長325nm、4mW)に励起光源、370nmロングパスフィルターを使用し、室温で発光スペクトルの測定を行った。応力発光強度は励起光源としてプラックライトを1分照射し、励起光遮断後60秒後にピエゾアクチュエーターで3Hzの応力を印加し、発光をデジタルカメラで撮影し、画像処理により発光強度を測定した。

3. 実験結果

3.1 結晶の同定

Sr欠陥系試料のXRDパターンを図1に示す。図中の黒線はSrAl2O4のICDDの値である。Srを減じていくと、格子体積は減少する傾向を示した。これよりSrが欠損したことにより、電荷バランスによる酸素空孔の生成が考えられる。

\[-V_{Sr^{2+}} = V_{O^{2-}}\quad (1)\]

1-x<0.96では格子体積はほぼ一定となり、欠陥がそれ

図1. Sr欠陥系試料のXRDパターン

図2. B添加量に伴うピーク位置の変化

3.2 格子体積変化

B添加量に伴うXRDパターンの変化を図2に示す。Bの添加量を増やしていくことで、ピークの位置が徐々に高角度側にシフトした。これはAlよりもイオン半径が小さいBが置換したことで、格子面間隔dが小さくなり、プラックの式を満たすが、大きな変化を示したからであると考えられる。Si,P添加系試料においても同様の傾向が見られたため、添加イオンとAlの置換が期待できる。

図3. Sr欠陥系試料の格子体積

図4. Sr欠陥系試料のICCD
次に酸化物添加系試料の格子体積を図4に示す。酸化物を添加していくと、格子体積は全て減少した。AlO₄四面体がSiO₄,BO₄,PO₄四面体に置換すると、Al-Oの結合距離 (1.93Å)がSi-O(1.66Å),B-O(1.52Å),P-O(1.57Å)の結合距離よりも長いため、単位格子が縮小したことが考えられる。さらに、式(2)の関係からAl³⁺と価数が異なるSi⁴⁺やP⁵⁺の置換により、酸素空孔の生成が考えられる。

次に酸化物添加系試料のPLスペクトルを図5に示す。全ての試料において、発光中心であるEu²⁺の520nmのブロードなスペクトルを観測した。Bに関しては添加物無しよりもPL強度は増大した。これはBがフラックスとして働き、粒径を増大させたからであると考えられる。応力発光も同じ発光起源である。

3.5 応力発光
酸化物添加系試料の酸化物添加による応力発光強度依存性を図6に示す。それらのイオンの添加によって極大組成は異なるが、無添加よりも約50%程度増加した。これは図4の格子体積の結果と比較すると、格子体積が減少し、四面体中心イオンの置換が起こることで、電荷バランスによる酸素空孔量が増え、応力発光の増加に寄与したと考えられる。

次に、Sr欠陥系試料のSr欠陥導入に伴う応力発光強度依存性を図7に示す。1−x=0.97付近で欠陥無し(1−x=1)よりも約3倍増加した。図3の格子体積の結果と比較すると、格子体積が減少したことで、Sr欠陥導入に伴う電荷補償による応力発光に寄与する電子トラップの生
4. 結論

Sr欠陥系試料、酸化物添加系試料を固相反応法により作製した。どちらの系も添加による格子体積の減少が見られ、酸素欠陥が増加したと思われ、それに伴って応力発光強度の増加が観測された。このことから、応力発光強度を増大させるためには、格子体積の減少が見られるような酸素空孔の生成を促すことが重要である。

参考文献

2) 足立吟也, 希土類の科学, 化学同人, 896, 1999.
原料ガス断続供給法を用いて異なる成長温度で作製したGaAsナノワイヤの発光特性

仲川豪志 a)・前田幸治 b)・鈴木秀俊 c)・境健太郎 d)

Growth Temperature Dependence of Optical Properties in GaAs Nanowires Grown by Pulsed-jet Gas Epitaxy

Goushi NAKAGAWA, Kouji MAEDA, Hidetoshi SUZUKI, Kentaro SAKAI

Abstract

GaAs nanowires (NWs) were grown on Si (111) substrate by Au assisted pulsed-jet gas epitaxy. The shapes and luminescent properties of NWs were investigated by scanning electron microscope and photoluminescence. The diameter and length of NWs decreased with increasing growth temperature (Tg). NWs shape was tapering up to 550℃. The dispersion of the growth angle of NWs decreased with the increasing in Tg. The emission from the NWs grown at 530～550℃ was detected at room temperature. While that from grown at 480℃ and 500℃ could not be detected. The luminescence from free exciton in NWs could be observed in NWs grown at Tg 530℃, and the crystallinity of the NWs was the best. These results were seemed due to increase of impurities or As desorption.

Keywords: nanowire, NWs, GaAs, Au-assisted, pulsed-jet gas epitaxy, photoluminescence

はじめに

半導体デバイスは、シリコン(Si)の微細化加工技術の発展に伴い、高性能・高集積化を実現してきた。しかし、近年ではその微細化技術に限界を迎えつつあるため、新たな加工技術や半導体材料が研究されている。III-V族半導体であるGaAsは、Siを凌ぐ高いキャリア移動度と発光効率を有することから、高速デバイスや光電子デバイスへの応用が期待されている。しかし、Siと比べ高価であり、熱伝導も悪いという欠点がある。そのため我々は、原料ガス断続供給法を用いた気相-液相-固相(VLS)成長で、安価なSi (111)基板上にGaAs-ナノワイヤ(NWs)の作製を試みた。

NWsとは1次元細線構造の材料のことで、異種材料間の接触面積を減らし格子不整合や熱的な問題を低減することができる。また、作製に用いられた原料ガス断続供給法は有機金属の原料ガスを交互に反応室内に供給し、自己停止機構を利用して原子層レベルで結晶成長させる技術である。しかし、NWs成長では、触媒界面下で結晶成長が進行するため原子層制御ができない。そのため、本研究では原料ガス断続供給法と表現する。原料ガスを交互に供給することで、異種原料間の衝突による拡散長の低下を抑制する特徴を持つため、同時に供給する成長法と比べ高品質なNWs作製が期待される。さらに、供給量を細かく時間的に制御することができ、成長初期と成長後期で異なる供給量や供給比に変えることが容易にできる。そのため原料を同時に供給するMOVPE法以上にNWsのサイズ制御やコアシェル構造NWs作製の応用が期待できる。

2. 実験

2.1 原料ガス断続供給法

原料ガス断続供給法は、ALE(Atomic Layer Epitaxy)法に使用されるパルスジェットエピタキシー装置を用いて行った。ALE法は有機金属である原料ガスを交互に反応室内に供給し、自己停止機構を利用して原子層レベルで結晶成長させる技術である。しかし、NWs成長では、触媒界面下で結晶成長が進行するため原子層制御ができない。そのため、本研究ではALE法ではなく原料ガス断続供給法と表現する。原料ガスを交互に供給することで、異種原料間の衝突による拡散長の低下を抑制する特徴を持つため、同時に供給する成長法と比べ高品質なNWs作製が期待される。さらに、供給量を細かく時間的に制御することができ、成長初期と成長後期で異なる供給量や供給比に変えることが容易にできる。そのため原料を同時に供給するMOVPE法以上にNWsのサイズ制御やコアシェル構造NWs作製の応用が期待できる。

2.2 試料作製

GaAs-NWsは、Si(111)基板上に触媒としてAuをスパッタにより膜状に10nm堆積し、装置内でアニュール処理を550℃で5分間行ない、Ga、Asの原料ガスをTMGa((CH₃)₃Ga)、TDMAAs([(CH₃)₃N]₃As)の順に供給し、間にバージガスとしてH₂を挟んだ。このガスフローシーケンスを140cycle行いVLS成長させた。成長温度(Tg)はそれぞれ480～550℃とした。
2.3 評価方法

作製した GaAs–NWs の走査型電子顕微鏡(SEM)断面写真を図1に示した。断面写真より NWs の直径、長さ、成長方向を測定した結果、直径は成長温度の増加により若干の減少傾向にあった。長さは、530℃以上で減少し、550℃では先細りが顕著であることから、As 脱離の影響が考えられる。成長方向に関しては、Tg 530℃から基板と90～100°の角度に集中して成長し、Si (111)基板における理想的な成長方向である垂直方向に優勢となる結果となった。

500℃以下では拡散長が短いために、原料が触媒へ届かず NWs 側壁での結晶化が促進し横方向成長したと考えられる1)。

これら NWs の発光特性を調べるためにフォトルミネッセンス(PL)法を用いた。励起光には波長 532 nm、強度 14 mW のYAGレーザーを用いた。測定温度は17～290 Kの範囲とした。励起光強度依存も測定した。

3. 実験結果及び考察

3.1 低温 PL スペクトル

図2に作製した NWs の17 Kにおける PL 測定結果を示した。Tg で PL スペクトル形状、発光エネルギーが異なり、480～550℃においてそれぞれ 1.473, 1.482, 1.499, 1.494, 1.498 eV 付近にピークが観測された。

GaAs バルクでは、1.493 eV 付近で伝導帯からカーボンアクセプタへの発光遷移が報告されている3,4)。従って Tg 530 〜 550℃で観測されるピークは、原料に含まれるカーボンが不純物として結晶中に取り込まれたことに起因していると思われる。Tg 530℃の NWs で観測される 1.515 eV 付近のショルダーは GaAs の自由励起子発光と同定できた5,6)。

図3にAu膜厚5.0 nm、10 nmで作製した GaAs-NWs の測定温度20 Kにおける PL スペクトル結果を示した。
NWsの直径と長さはAu膜厚に依存することが以前の研究で分かっており、Au膜厚5.0 nmで直径115 nm、長さ1.6 μm、Au膜厚10 nmで直径226 nm、3.1 μmを有するNWsが成長した。これらNWsのPLスペクトルには差がほとんど見られない。従って、TgによるPLスペクトルの違いは、As脱離や不純物による影響と考えられる。そのため、観測された発光ピークの詳細を調べるために、PL温度依存性を測定した。

3.2 PL温度・励起光強度依存性
図4に例としてTg530℃で作製したNWsのPLスペクトル温度依存性を示した。Shoulderは80 K付近で観測されなくなる。PLスペクトルは温度により発光エネルギーが変化することが確認できた。従って、各Tgで作製したNWsのPLスペクトルのピークエネルギーを比較し、発光特性を調べた。

図4 成長温度530℃で作製したGaAs-NWsのPLスペクトル温度依存性(17～290 K)。

図5にGaAsのバンドギャップと、各Tgで作製したNWsのピークエネルギーの温度依存性を比較したグラフを示した。Tg530～550℃NWsのピークは17～30K間の高エネルギー側へのシフトを示した。これは、スペクトルが複数のエネルギー準位で構成され、キャリアが浅い準位へ熱励起されたことによる移動であると考えられる。30K以上になるとピークは温度上昇に伴い低エネルギー側へシフトし、200K以上になるとバンドギャップと同様の温度依存性を示した。これらのピークは、室温まで観測されることから結晶性が高いと言える。しかし、Tg540、550℃NWsは自由励起子発光が観測されないことが確認できた。従って、各Tgにおいて結晶性が良いと言える。しかし、Tg540、550℃NWsは励起子による発光が支配的であり、結晶中に不純物や欠陥が多く含まれることが考えられる。Tg530℃以上で作製した試料のNWsの成長方向は基板に対し垂直方向に優先的に成長し、PL発光も室温まで観測された。530℃の試料でのみ励起子に関する発光がはっきりと観測できた。540、550℃NWsは励起子による発光が観測されないことから、As脱離の影響で結晶性が低下した。従って、ドナー・アクセプター対（DAP）による発光が考えられ、不純物や欠陥の増加により結晶性が低下していると考えられる。

図5 GaAsバークのバンドギャップと、成長温度480～550℃で作製したGaAs-NWsのピークエネルギーのPL温度依存性の比較。

図6 成長温度480～550℃で作製したGaAs-NWsのピークエネルギーの励起光強度依存性。

4. 結論
原料ガス断続供給法により、異なるTgで作製したGaAs-NWsは530℃を境にNWs形状と光学的特性が異なった。530℃より低いTgでは、原料の拡散長が短いためNWsの成長方向のバラつきが大きい。さらに、その発光特性はDAPによる発光が支配的であり、結晶中に不純物や欠陥が多く含まれることが考えられる。Tg530℃以上で作製した試料のNWsの成長方向は基板に対し垂直方向に優先的に成長し、PL発光も室温まで観測された。530℃の試料でのみ励起子による発光がはっきりと観測できた。540、550℃NWsは励起子による発光が確認されないことから、As脱離の影響で結晶性が低下した。従って、Tg530℃で作製したNWsが最も結晶性が良いと判断した。
参考文献

原子層エピタキシー法によって作製された GaAsN 薄膜の作製
条件の違いが結晶性に与える影響のラマン分光法による評価

橋本 英明 a)・和田 季己 b)・横山 祐貴 c)・前田 幸治 d)・鈴木 秀俊 e)

Effects in Growth Conditions on Crystallinity of GaAsN Films
Grown by Atomic Layer Epitaxy using Raman Spectroscopy

Hideaki HASHIMOTO, Toshiki WADA, Yuki YOKOYAMA,
Kouji MAEDA, Hidetoshi SUZUKI

Abstract

Effects of growth conditions in GaAsN films prepared by atomic layer epitaxy have been evaluated using Raman spectroscopy. The Raman spectrum were fitted to the LO and TO modes using the Lorentz function. The crystallinity was evaluated from the full width at half maximum of LO peak and the area intensity ratio of LO and TO peak. Crystallinity deteriorated with increasing in the growth temperature. The crystallinity was improved as the results of increasing the film thickness and decreasing of the gas supply duration. The growth temperature at 480 °C had the best crystallinity in GaAsN films.

Keywords: ALE, Raman, GaAsN, Crystallinity

1. はじめに

III-V 族化合物半導体を用いた多接合型太陽電池は、高
効率な太陽電池として期待されている 1). 現在実用化さ
れている格子整合型多接合太陽電池は、
InGaP/(In)GaAs/Ge の 3 接合型太陽電池であり、変換効
率は 30%以上である。しかし、GaAs (1.41 eV) セルと
Ge(0.67 eV) セルのバンドギャップエネルギーデリカが大き
いために、Ge セルでの過剰エネルギーダイナミックが大きい。そこ
で GaAs と Ge 間に格子整合し 1 eV 程度のバンドギャッ
プエネルギーダイナミックを持つ第 3 セルを挟んだ 4 接合型太陽電
池が提案されている。この条件を満たす材料として期待
されているのが InGaAsN である。しかし、As と N の間
の共有結合半径の大きな差や N の強い非混和性などの影
響で局所的な歪みや結晶面方位の乱れが生じ、結晶性が
悪くなる問題がある。この問題を解決するためには成長
表面の制御とその評価が必要である。

そこで、一回の原料供給に対して単原子層で成長が飽
和する、セルフリミティング機構により単原子層単位で
成長表面の制御が可能な、原子層エピタキシー(ALE)法を
用いて成長を試みた。本研究の目的は、ALE 法による高
品質な GaAsN 薄膜作製の条件を探る目的である。

2. 実験方法

本研究では、半導体 GaAs(001) 基板上に GaAsN 膜を
ALE 成長させ、ラマン分光法により評価を行った。試料
膜厚の影響を調べるため、膜厚を約 100 nm と
300 nm に
成長させたもの、原料供給時間の影響を調べるため、
Ga と As の原料供給時間をそれぞれ 3, 4, 6 sec、
5, 8, 10 sec
と変化させたものを作製した。成長温度はすべての試料
において、480, 500, 520 ℃で作製した。

本研究で用いた装置の概略図を図 1 に示す。ラマン測
定では、分光器は SPEX 社製 Raman Spectrometer 1877
Triple-Spectrometer を用い、回折格子は 1800 本、検出器
に Roper Scientific 社製 1340 × 400 背面照射型 CCD を液体
窒素で-115 ℃に冷却して用いた。励起光源として、Ar
レーザー(488.0 nm) と He-Cd レーザー(441.6 nm)を用いて、
室温で後方散乱配置により測定した。波数の校正には
Ne ランプを用いて、誤差が ±1 cm⁻¹以内に収まるように調整
を行った。ラマン分光法における評価深さは、GaAs にお

図 1 ラマン測定装置図。

a) 電気電子工学専攻大学院生
b) 電子物理工学科学生
c) 農学工学総合博士課程学生
d) 電子物理工学科教授
e) 電子物理工学科准教授
いて、侵入長より Ar レーザーと He-Cd レーザーで、それぞれ約 91 nm と約 33 nm である。

3. 解析

ラマン測定によって得られたラマンスペクトルの一例を図 2 に示す。ローレンツ関数を用いて LO モード(−292 cm⁻¹)と TO モード(−268 cm⁻¹)に対してピークフィッティングし、半値幅とピーク面積のパラメータを求めた。LO ピークの半値幅は隣接原子間距離の乱れを表し、禁制 TO モードの出現は、結晶の面位置の乱れなどを表す。このLO ピークの半値幅 (LO FWHM) と LO ピークと TO ピークの面積の比 (TO/LO) の二つの指標を用いて結晶性の評価を行った。

GaAs₁₋ₓNₓ の擬二元系の結晶性において、Ga-As と Ga-N の結合距離が異なるため、局所的に見ると長距離秩序がなくなり、TO 禁制が破れている 3)。そのため、単純に TO/LO の大小関係を二元系の値と比べて、結晶性の評価をすることができない。

4. 結果と考察

4.1 膜厚の影響

膜厚の異なる GaAsN 試料を Ar レーザーを用いて測定し、LO の半値幅と TO/LO の二つの数値の変化を評価した。図 3 に GaAsN 層 100 nm と 300 nm の LO の半値幅と成長温度の関係を示す。これより、LO の半値幅は成長温度の上昇に伴って増加した。しかし、成長温度 520 ℃にて作製した 100 nm については他と傾向が異なった。

図 4 に GaAsN 層 100 nm と 300 nm の TO/LO と成長温度の関係を示す。TO/LO は成長温度の上昇に伴って増加しており、厚さ 300 nm の薄膜は 100 nm のものよりもその傾向が弱く、成長温度の増加に伴う TO/LO の増加が少なかった。膜厚が厚くなると、成長温度の増加に伴う結晶性の悪化を抑えた。

図 4 より 520 ℃の 100 nm は TO/LO が特に大きいにも関わらず、図 3 の LO の半値幅が小さいことから、GaAsN 膜が上手く成長しておらず、基板の GaAs の LO が同時に測定された可能性がある。

以上より、膜厚が厚いと、成長温度の増加に伴う結晶性の悪化を抑えるが、GaAsN 層厚さ 100 nm と 300 nm ともに成長温度 480 ℃で LO 半値幅は最小値を取り、TO/LO は同じ値を取ることから、今回作製した条件の範囲では、成長温度 480 ℃が最適であった。

図 3 膜厚の異なる試料 100 nm と 300 nm の成長温度に対する LO 半値幅。

4.2 原料供給時間の影響

原料供給時間の異なる GaAsN 試料を He-Cd レーザーを用いて測定し、それぞれ LO の半値幅と TO/LO の変化を評価した。図 5 に Ga 原料供給時間の異なる GaAsN 試料の成長温度に対する LO 半値幅の変化を示す。図 5 より、すべての Ga 原料供給時間において、LO 半値幅は成長温
度が低いほど減少していることから、低温成長で結晶性が良くなった。しかし、原料供給時間による差は見られなかった。

次に、図6にGa原料供給時間の異なるGaAsN試料の成長温度に対するTO/LOの変化を示す。図6より、すべてのGa原料供給時間において、成長温度が低いほどTO/LOが減少した。その傾向は、Ga原料供給時間が長いほど大きくなった。

図7にAs原料供給時間を変えて作製したGaAsNの成長温度に対するLO半値幅を示す。図7より、すべてのAs原料供給時間において、LO半値幅は成長温度が低いほど減少している。成長温度が低いほど結晶性が良い。成長温度の上昇に伴って、原料供給時間が短いほど成長温度の増加に伴う結晶性の悪化を抑えた。すべての条件において、成長温度が低いほど結晶性が良い。成長温度が低いことで、表面原子の脱離量が減少し、欠陥が少なくなったと考えられる。

図8にAs原料供給時間を変えて作製したGaAsNの成長温度に対するTO/LOの変化を示す。As原料供給時間8、10秒では成長温度の減少に伴い、TO/LOが減少した。As原料供給時間5秒では成長温度によらずTO/LOが低くなった。

以上より、原料供給時間が結晶性に与える影響は、今回評価した試料のTO/LO半値幅とTO/LOの関係を示している。図9より、TO/LOが0.5程度まではLO半値幅と強い相関があり、どちらのパラメータでも同じように結晶性の評価が行える。しかし、TO/LOが0.5付近より高い値から、LO半値幅は一定の値で飽和した。これは、成膜の成長温度が低いことで、表面原子の離脱が減少し、欠陥が少なくなったと考えられる。
枝 L(-)が TO の付近に出現し、見かけ上の TO 面積強度が増えた可能性が考えられる。

図 9 原料供給時間の異なる GaAsN の TO/LO に対する LO 半値幅。

5. 結論

本研究では、ALE 法で作製された GaAsN 試料をラマン分光法により測定し、そのラマンスペクトルを解析し結晶性の評価を行った。その結果、膜厚を変えて作製された GaAsN の測定結果からは、成長温度の増加に伴い結晶性が悪化するが、膜厚が厚いほどその変化を抑制し、結晶性が良くなった。

次に、原料ガス供給時間を変えて作製した GaAsN の測定結果からは、成長温度の増加に伴い結晶性が悪化するが、原料ガス供給時間が短いほど、その変化を抑制し、結晶性が良くなった。

今回測定したすべての作製条件において、成長温度 480 ℃のとき最も結晶性が良い結果となった。

参考文献

Basic Research for Fabrication of Ultra-thin Films on Si(111)-7x7 Clean Surface

Yuta MATSUNAGA a), Kazuki NIHARA a), Shin KAMITAKI b), Atsushi YOKOTANI c)

Abstract

To obtain important information for fabricating atomic-scale Au thin films that are used for biosensors, we have observed the morphology of Au particles adsorbed on a Si(111)-7x7 surface, which is supposed to be the initial stage of Au atomic thin film formation. Au particles were adsorbed on the clean Si surface using a PLD method, and the adsorbed particles were observed using a scanning tunneling microscope. The observed Au particles could be classified into three types. The larger particles seemed to form clusters, which are aggregations of particles in which each particle is distinguished, so we call this type of cluster a film-shaped cluster. In this work, we have mainly analyzed this type of cluster. As a result the film-shaped clusters were found to have a structure of nearly monoatomic layers. The particles in the clusters were gathered closely in roughly a 3-fold structure with an inter particle distance of 0.864 nm. We propose a model for the cluster structure by modifying Au(111) face so that each observed particle consists of three Au atoms.

Keywords: STM, PLD, Adsorption, Au, Si(111)-7x7

1. Introduction

Lately, the electromagnetic, mechanical, and chemical properties of metallic thin films have been utilized in various fields from scientific equipment to household goods [1-7]. Historically, for example, optical thin films with a typical thickness of about several hundred nanometers were widely used [1]. But in very recent years, extremely thin films with a thickness of 10-80 nm have been used in devices utilizing surface plasmon resonance (SPR) where the special properties of the electromagnetic field of light that does not propagate are localized at the interface between the thin films and dielectric substrates. Typical examples of such devices are biosensors [9,10]. Since the metallic thin films of Au with a thickness of about 10 nm are used in many types of biosensor, it is necessary to have atomistically flat surfaces so that even a roughness of only 1-2 nm has to be avoided [2,11]. It has been suggested that nanoscale spikes on a metallic surface affect the sharpness of the resonance properties. Conventionally, in studies on depositing atomically flat thin films, molecular beam epitaxy and thermal vapor deposition methods were mainly used [12,13]. In contrast, we used pulsed laser deposition (PLD) methods in our work because the equipment is quite simple and inexpensive. Although conventional PLD methods have been used for nanoparticle films [14,15], this method is promising for atomically thin metallic films as described in our previous work [16-19]. The morphologies of atomistic Au thin films and/or nanoparticles have been observed by scanning tunneling microscopy (STM) [20], atomic force microscopy (AFM) [2], transmission electron microscopy [21], and so on. In this work, we adopted a system combining the PLD method and STM in ultra-high vacuum chambers to observe the initial stage of growth of Au thin film because an atomistically flat thin film must be flat in the initial stage as well. Therefore, in this work we have focused on clusters consisting of several to tens of atoms on the clean Si(111) surface. The purpose of this work is to observe the morphologies of Au clusters on a Si(111) surface, which imply the existence of the important information of film formation with the STM to ultra-thin films at an atomic-scale.

2. Experimental

Figure 1 shows the experimental set-up. An ultra-high vacuum STM system (USM-802, Unisoku, Co., Ltd., Japan) was used. This equipment consists of three ultra-high vacuum chambers referred to as Chamber I, Chamber II, and Chamber III. The base pressure of these three chambers was less than 10⁻⁷ Pa. First, we introduced an Si substrate and an Au target using the introduction port of Chamber III, which is a sample introduction chamber. Next, the Si substrate and the Au target were moved together to Chamber II, which is a preparation chamber. High temperature flashing was carried out to obtain the Si(111)-7x7 surface [22] here. The flashing conditions were as follows: heating 10 times for 1-2 seconds at 1080-1085°C followed by a final heating of 3-4 seconds at 1070-1075°C. After the cleaning process, the substrate was moved to Chamber I, and we checked with an STM to see if a clean
surface had been formed. After confirming that the surface was clean, Au particles were adsorbed by PLD method in Chamber II. The principle of the PLD method has been described in detail in the literature [23]. In this method, the pulsed laser beam was focused on to the target, and ablation phenomena were caused. The ablated materials were deposited onto the substrate surface; consequently, the thin film of the target materials could be fabricated. In spite of such a simple method, it is possible to supply particles atomistically if the irradiation condition is properly selected [16-19]. In this study, we used the second harmonic (λ = 532 nm) of an Nd:YAG laser (Tempest, New Wave Research Inc., USA) with a 0.2 mJ/pulse laser energy. The laser was focused on the surface of the Au target using a lens with a focal length of 300 mm. The spot size on the target was approximately 100 μm, so the fluence was approximately 2.5 J/cm². The distance between the target and the substrate was set at 20 mm. The substrate was irradiated with laser pulses of 4-20 shots before the observation. We moved the substrate to Chamber I again and observed the morphology of adsorbed Au particles with the STM.

3. Results

3.1 Morphology of adsorbed particles

Figure 2 shows an STM image of Au particles adsorbed on a Si(111)-7x7 surface after irradiation with laser pulses of 7 shots. In the STM images, the particles brighter than the Si adatoms are Au particles. As the number of laser shots was increased (from 4 to 20 shots) in the PLD method, the adsorbed particle became larger (typically 0.6 to 5.0 nm in diameter). Among the adsorbed particles, the small particles surrounded by the solid line circle (a) in Fig. 3 are supposed to be a single atom. On the other hand, the particles surrounded by the dashed line circles ((b) and (c)) are clusters that consist of many atoms. In our observation, two types of clusters were observed: grain-like clusters (b) and film-shaped clusters (c). Fig. 3(a), (b), and (c) show enlarged images of typical examples of the particles and the clusters observed in Fig. 2. Fig. 3(a) shows an image of the monoatomic particle. It has been reported that this type of particle prefers to adsorb onto the Si adatoms [16]. Fig. 3(b) shows an image of the grain-like clusters consisting of 2-5 atoms. The authors have already reported that this type of particle has structures based on the fcc structure just like the bulk metallic Au by comparing the structures with the shape of similar particles of Mn [16]. Therefore, in this paper, we mainly treated film-shaped clusters as shown Fig. 3(c).

3.2 In-plane structure

Fig. 4 shows a schematic drawing of the Si(111)-7x7 dimer-adatom-stacking fault (DAS) model [22]. In this figure, atoms belonging to the more surface layer were filled with brighter colors. Distortion occurs in the STM image due to piezoelectric nonlinearity and noise, so in order to know the correct positional relationship between the adatoms on the Si substrate and the adsorbed Au particles, we firstly use these Si(111)-7x7 ideal structures. Considering the ideal arrangement of adatoms illastlated in Fig. 4, we tried to estimate the correct positions of adatoms which are hidden under the cluster. For this purpose, the positions of corner holes in Si(111)-7x7 observed in Fig. 5(a) were used. The estimated positions were shown in Fig. 5(b). In this figure, the one shown in red
indicates that 70% or more overlaps with the underlying adatom, and it can be treated as directly above the adatom. Other yellow ones indicate the particles for which clear positional relationship between Au and Si adatoms have not been observed. As shown in this figure, the particles of the cluster were not always arranged exactly on the Si adatoms. While the Au particles had roughly a 3-fold structure, they also cleanly had disordered structure. Although the particles in the STM image were observed as if each particle was distinguished, the particle was not considered to be a single atom, because its diameter was too large compared to that of a single atom. From the image in Fig. 5(b), the distance between the particles was measured as 0.864 ± 0.009 nm which is almost exactly corresponding to three times of Au interatomic distance. So we can estimate the diameter of the observed particles as 0.864 nm assuming the closed-packed hard sphere model. This diameter was similar to that of grain-like clusters consisting of three Au atoms [16].

4. Discussion

4.1 Thickness of the film

The STM image was basically constructed with the height information from the voltage applied to piezoelectric devices. However, it is difficult to analyze the raw data directly because they contain noise and drifted signals, which produce image distortion. Therefore, we tried to re-measure the height information from the obtained STM image by analyzing the brightness distribution with confirming the quality of the image. Fig. 6(a) shows the STM image that was used to confirm the validity of the measurement by measuring the height of the adatom from the corner hole. The dashed line in Fig. 6(a) corresponds to the dashed line in Fig. 4. The height distribution obtained from the brightness in the STM image of Fig. 6(a) is shown by curve (A) in Fig. 6(b). In Fig. 6(b), the abscissa stands for the horizontal distance, and the ordinate on the left stands for the relative value of height information. A schematic drawing of the cross-sectional view when Si(111)-7x7 DAS model was cut along the dashed line in Fig. 4 is also shown with the same scale. Generally in STM images, since atoms are observed with a diameter of approximately two times that of the so-called atomic size when estimated with the hard sphere model, curve (A) in Fig. 6(b) was interpreted to agree successfully with the profile of the cross section of the Si(111)-7x7 DAS model. In Fig. 6(b), height value of the ordinate on the right was indicated by estimating from the interatomic distance of the cross-sectional drawing.

Next, we carried out similar measurement for an image of film-shaped clusters. We used Fig. 5(a) to estimate the highest point of the cluster. The height point distribution between positions A and B in Fig. 5(a) was measured. The results are shown as curve (B) in Fig. 6(b). The circles filled with bright colors in Fig. 6(b) show the size of Au atoms of 0.288 nm in diameter. In the figure, two kinds of cases are illustrated: only an Au atom was adsorbed and two Au atoms were vertically accumulated on the Si adatom. As described above, a particle size of two times the atomic size was observed in the STM image, and we illustrated that size for Au atoms by the dashed lines surrounding some of the white circles in Fig. 6(b). Comparing these heights, we recognized that the highest point of the film-shaped cluster of approximately 0.73 ±0.01 nm is higher than the case of a single Au atom (0.68 nm) but lower than the case of two Au atoms (0.91 nm). Consequently, these results imply that the thickness of the film-shaped cluster is nearly monoatomic.

4.2 3-Dimensional structure of film-shaped clusters

We considered and estimated a model which agreed with the facts obtained in this work. Fig. 7(a)–(f) illustrate a relation between the estimated model and fcc structure. A unit cell of fcc was shown in Fig. 7(a). Three yellow atoms correspond to the three atoms which form the observed particles with diameter of 0.864 nm described in the section 3.2. The atom with a dot stands for one located at the origin. In Fig. 7(b), one of the atom located at the vertex point was removed so that the (111) plane was able to be seen. From Fig. 7(c) to (d), the structure illustrated in Fig. 7(b) was tilted so that the (111) plane became to the bottom face and rotated so that the three yellow atoms were oriented into the final direction. In Fig. 7(e), an atom which was located at the apex was removed. Finally, we obtained the structure in Fig. 7(f) by periodical arranging the structure shown in Fig. 7(e). As shown in Fig. 7(f), atomic group consists of three atoms are periodically arranged with a distance of 0.864 nm. In Fig. 8(a), the top view of this model is shown. The size and inter-particles distance were agreed with the observation results (Fig. 5(a)). However, this periodicity does not match that of the adatom as shown in Fig. 8(b). This fact is considered to give rise to a structural disorder (Fig. 8(b)). Therefore, we think that it will have a structure containing distortion at most at about three cycles.
Fig. 5 A schematic drawing of position of the atoms and particles consisting of the cluster
(a) Film-shaped cluster and (b) pattern diagram

Fig. 6 The height distribution obtained from brightness STM image. (A) Re-measured from the image of Si(111)7x7 surface, and (B) from the image of the adsorbed cluster.

Fig. 7 Relation between the estimated model and fcc structure

Fig. 8 Proposed structure of film-shaped clusters of Au.
(a) Top view and (b) Relationship between Si adatom and model diagram.
5. Conclusion

To obtain important information for fabricating atomic-scale thin films, we have observed the morphology of Au clusters formed on the Si(111)-7x7 surface by the PLD method. The results obtained in this study are as follows:

1) The observed film-shaped clusters were found to have a structure of nearly monoatomic layers.

2) The structure of the film-shaped cluster has been successfully proposed by assuming that each particle of the cluster consists of three Au atoms.

It is expected that a flat Au thin film of atomic scale thickness can be formed by covering the film with many of these film-shaped clusters.

References

16) A. Yokotani, R. Kihara, K. Nakayoshi, STM observation of initial stage of growth of Si-Mn films on Si(111)7x7 surface, Journal of Ceramic Processing Research. 16(1) (2015) 107-110.
17) A. Yokotani, Y. Okazaki, K. Nurulhusna, T. Uno, Observation of adsorption site of molecules and atoms provided by the pulsed laser deposition method on Si(111)7x7 surface, Optical Materials. 32 (2010) 759-763.
Growth of ZnMgO films by Spin-coated Method

Himeka TOMINAGA, Kenji YOSHINO

Abstract

ZnMgO films on glass substrate could be grown at low temperature (150°C) under nitrogen atmosphere. We used diethylzinc and dibutylmagnesium as started materials to grow ZnMgO films at low temperature. We examined annealing-temperature dependence of the sample s by X-ray diffraction (XRD), optical transmittance, and Hall measurements. Peaks of the ZnMgO films could be observed in the XRD patterns. Absorption edge of ZnMgO shifted to higher energy region than that of ZnO by the optical transmittance spectrum. All samples had an average optical transmittance of more than 85%.

Keywords: ZnMgO, Spin-coated
2. 実験
2.1 実験方法
スピンコート法は、基板の上に溶液を供給して基板を回転させ、遠心力により溶液を基板全体に広げて膜にする方法である（図 1）。基板の形は可能であれば円形がよい。角型の場合、膜厚のコントロールに工夫が必要であり、角の部分の膜厚が他の部分と異なる可能性があるためである11）。今回用いたスピンコート成膜のパラメータは、回転時間：15s、回転数：1000rpm、熱処理温度：50℃、150℃、300℃、450℃、成膜回数 2 回とした。原料は、本研究室で ZnO において低温成膜に成功したジエチル亜鉛にジブチルマグネシウムを添加したものを用いた（東ソーファインケム株式会社提供）。成膜プロセスは原料をガラス基板上に塗布し、スピンコートにより成膜後、各温度で 5 分間アニールを行うというプロセスを 2 回行い、得られた ZnMgO 膜を XRD（X 線回折）、SEM（走査型電子顕微鏡）、原子間力顕微鏡（AFM：Atomic Force Microscope）、透過測定、四短針測定、ホール測定において評価した。

図 1. スピンコート法の概略図

3. 実験結果および考察
図 2 のサンプル写真より、あきらかにすべてのサンプルにおいて白濁することなく高透過率の無色透明のサンプルが得られた。
次に、透過率測定の結果を図 3 に示す。作製した 50℃、150℃、300℃、450℃サンプルのガラス基板、ZnO に対する透過率・吸収端を調べるために 200 ～500 nm の範囲で透過率測定を室温で行った。全てのサンプルにおいて透過率が 85%を超えており、透過性に優れた薄膜であると考えられる。また、ZnO にくらべると ZnMgO の吸収端は短波長側にシフトしていた。これは ZnO に Mg を添加したことにより Zn と Mg が置換して、ZnMgO が作製されバンドギャップが広がったと考えられる。
さらに作製した ZnMgO 薄膜の各温度で ZnMgO の結晶が形成されているか調べるために X 線回折による評価を行った。図 4 に熱処理温度を変化させた X 線スペクトルを示す。ICDD と比較すると、熱処理温度が 150℃以上のサンプルにおいて、(10-10)、(00-02)、(10-11)面のピークが確認できた。このことから、熱処理温度が 150℃以上から ZnMgO の結晶が形成されると考えられる。また、熱処理温度が上がるにしたがってピークがシャープになっていった。このことから、熱処理温度が上がるにしたがって結晶
スピンコート法による ZnMgO 膜の作製

ZnMgOの電気的特性を調べるためにホール測定により抵抗率、キャリア密度、移動度を求めた。図8に各熱処理温度におけるZnMgO薄膜のホール測定による抵抗率とキャリア濃度を示す。抵抗率は50-300℃まではほぼ一定の値を示し、450℃で低下した。キャリア濃度は50℃から150℃までは低下し、150-450℃までは増加した。この原因としては、熱処理温度が増加するにしたがって酸素空孔や格子間亜鉛が増加し、キャリア密度が増加し、抵抗率が減少したと考えられる。また、移動度のグラフを図9に示す。150-300℃において移動度が減少している。これはキャリア濃度が増加したことからイオン不純物散乱の影響で移動度が減少したと考えられる。

キャリア濃度の増加の原因究明にXPS測定を行った。アモルファス温度が増加するとZnの割合が増加しOの割合が減
4. 結論

スピンドアート法によりジエチル亜鉛を原料とした溶液を用いてZnMgO薄膜の低温、窒素雰囲気下での作製を行った。サンプルは回転時間15秒、回転数1000回転、熱処理時間5分、成膜回数2回で作製し、熱処理温度を50、150、300、450℃と変化させた。作製したサンプルはZnMgOのICDDカードと比較し、X線回折ピーク位置と格子定数の一致から、熱処理温度が180℃以上でZnMgOの結晶が形成されている。透過率測定より、基礎吸収端はZnOに比べてZnMgOは短波長側にシフトしていた。これはZnOにMgを添加したことによりバンドギャップが大きくなったと考

えられる。SEM観察では熱処理温度が増加するとしたがって膜厚が厚くなる傾向を示した。これはXRDの結果より、熱処理温度が増加するにしたがって結晶が成長したと考えられる。ホール測定では、熱処理温度が増加するにしたがってキャリア濃度が増加し、抵抗率が減少した。キャリア濃度増加の原因としては、XPSの結果から格子間Znが原因と考えられ全てのサンプルにMgが5%含有していることが観察された。

引用文献
1) 南内嗣：透明導電膜の新展開IV，シー・エム・シー出版，(2012)。
Thickness Dependence of the Platinum Electrode in Dye-Sensitized Solar Cells

Himeka TOMINAGA, Kenji YOSHINO

Abstract

Dye-sensitized solar cells were prepared by changing thickness of platinum (Pt) electrodes grown by DC sputtering method. The N719 was used as dye material of the absorption layer. A open circuit voltage was constant, a short-circuit current decreased, a fill factor increased and a conversion efficiency decreased with increasing the Pt thickness. The best performance of the dye-sensitized solar cell was 3.2% in the Pt thickness of 5 nm.

Keywords: dye-sensitized solar cells, platinum electrode

1. はじめに

私たちの生活に必要不可欠なエネルギーの資源である石油などの化石燃料の大量消費により、エネルギー不足・地球環境問題が深刻化している。現在、世界中で消費している一次エネルギーは石油換算で年間約 80 億トンと言え、一次エネルギー消費分の 90％を化石燃料に依存している。化石燃料の消費量を今と同じ量で計算すると、石油はあと 45 年、天然ガスは 65 年、石炭は 230 年で確認できると考えることがある。そこで太陽光のエネルギーを直接的に電気エネルギーに変換することのできる太陽電池に大きな期待と注目が集まっている。

実用化されている太陽電池の中で、生産量最多多く歴史的にに実績があるのが、シリコン太陽電池である。結晶シリコン太陽電池は変換効率約 19%を示し太陽電池の中で最も高い変換効率であるが、高純度のシリコンは高価という問題点がある。5) また、最近実用化され始めているCuInGaSe2（CIGS）系の変換効率も約 15%と高められている。6) さらに、高効率化・コストダウンの観点から、CuInGaSe2 等の研究も進められている。

本研究では、FTO 薄膜の上にスキャージ法で TiO2 膜を作製し、少しずつコスト削減ができるように一般的なものに比べて色素の吸着時間を 6 時間で短縮して色素増感太陽電池の作製を行った。その際、対極の白金のスパッタ時間を変え金質膜厚を変更する。四探針測定、透過率測定を行い、セル作成後、電流-電圧（I-V）測定によって太陽電池特性の評価を行った。

2. 実験

2.1 実験方法

TiO2 ベーストを透明導電膜（FTO）に塗る方法にテープの厚みを利用したスキャージ法を用いた。図 1 にスキャージ法の概略図を示す。本研究ではテープの厚みが約 40 μm のものを使用し、FTO 基板に TiO2 膜を作製し、その後 30 分間ヒーター温度 540 度で焼成、60 分になるまでヒーター
温度を下げた。FTO 基板は旭硝子製のものを用い、水道水と食器用洗剤、蒸留水、アセトン、プロパノールの順に 10 分間超音波洗浄をしたものを用いた。TiO2 ペーストは Solaronix 社の D/SP のペーストを用いた。本研究では、対極の白金スパッタ時間を変化させ膜厚を 5 ~ 225 nm と変化させ、その場合の色素増感太陽電池（DSC）の特性を測定した。走査型電子顕微鏡（SEM）、原子間力顕微鏡（AFM: Atomic force microscope）、透過測定、走査型電子顕微鏡（SEM）および四短針測定、ソーラーシュミレーターにおいて電流-電圧特性を測定した。走査型電子顕微鏡（SEM）、原子間力顕微鏡（AFM: Atomic force microscope）、透過測定、四短針測定、ソーラーシュミレーターにおいて電流-電圧特性を測定した。

TiO2 ペーストは Solaronix 社の D/SP のペーストを用いた。本研究では、対極の白金スパッタ時間を変化させ膜厚を 5 ~ 225 nm と変化させ、その場合の色素増感太陽電池（DSC）の特性を測定した。走査型電子顕微鏡（SEM）、原子間力顕微鏡（AFM: Atomic force microscope）、透過測定、四短針測定、ソーラーシュミレーターにおいて電流-電圧特性を測定した。

I-V 特性では次の 4 点が重要であるとされている。

- 開放端電圧：Voc
 Voc とは開放端電圧（Open circuit voltage）と呼ばれるもので、太陽電池の正極と負極との間に何も接続しない状態での電圧である。色素増感太陽電池の場合では、電解液と酸化チタンのバンドギャップに依存しているため、材料が同じであれば開放端電圧は変化しない。単位は mV または V で表されている。

- 短絡電流：Isc
 Isc とは短絡電流（Short circuit current）と呼ばれるもので、太陽電池の正負両極を導線で接続した時の短絡した状態での電流である。単位は μA, mA, A などで表される。

- 形状因子：F. F（Fill Factor）
 形状因子 F. F. は次の（1）式で定義される。
 開放端電圧 Voc と短絡電流 Isc の比例を表すが、F. F. の最大値をもって太陽電池の効率を評価している。

\[F. F = \frac{V_{oc} \times I_{sc}}{P_{max}} \]

ここで、Pmax は最大出力電圧を示し、S は太陽電池の面積を表す。F. F. の最大値は 1 であるが、実際の太陽電池では通常 0.7 程度である。F. F. の値は太陽電池の性能を示すもので、値が大きいほど太陽電池の性能は高い。

E = 100 mA / cm² × 1000 mV = 100 mW / cm² (3)

この（3）式を用いると式（2）は次のようになる。

\[\eta = \frac{P_{max}}{E} \times 100 \% \] (4)

図 2 一般的な太陽電池の I-V 特性曲線

3. 実験結果および考察

図 3 のサンプル写真より、白金膜厚が 5 nm, 15 nm, 75 nm, 150 nm, 225 nm の試料は、FTO 基板の試料を比べてみ
ると徐々に黒くなりミラー性が強くなり、白金膜厚が75 nm までは背景の sample の文字が読める。白金膜厚が150 nm, 225 nm の試料は、他の試料に比べてさらに黒くなっていて、背景の sample の文字が読めていない。白金膜厚のスパッタ時間が増やすことに、白金膜厚が増えると明るさが強くなり透過率は悪くなる傾向を示した。

図3 白金スパッタ時間による Pt 膜の表面写真

走査型電子顕微鏡により、FTO基板上の白金の膜厚を5 ～225 nm と変化させて作製した試料の表面を観察した。走査型電子顕微鏡により、表面SEM写真を図4に示す。表面SEM写真より、白金膜厚が5 nm, 15 nm の試料はスパッタ時間が短かったため基板のFTOの凹凸がしっかりと確認できる。白金膜厚が75 nm, 150 nm, 225 nm の試料はスパッタ時間が長くなって白金の粒子が観察でき、粒径は、白金が堆積するに従って粒径は増加傾向を示した。また、白金膜厚が75 nm, 150 nm, 225 nm の試料では、粒界が丸くなり、試料表面の凹凸が小さくなっている17,18.さらに表面の凹凸を観察するためにAFMでの測定を行った。AFMによる、試料の表面粗さの三次元像を図5に示す。各白金スパッタ膜厚の二乗平均根粗さを図6に示す。白金スパッタ時間を長くして膜厚を増やすことで徐々に表面の凹凸が小さくなりフラットな面になっていることが確認できる。また、表面の粗さが小さくなっている傾向にあることが二乗平均平方根粗さRMSを図6で確認することができる。

スパッタリング装置で作製した5 ～225 nm の白金膜厚における試料の透過率測定を行い、全体の透過率、可視光の透過率として波長が340 ～800 nm、赤外光の透過率として波長が800 ～1300 nm での平均透過率を求めた。図7、8に作製した白金の各膜厚試料の透過率、平均透過率を表す。

白金膜厚が増加するのにしたがって透過率が減少する傾向を示している。白金膜厚が5 ～75 nm までの試料は約20% ずつ透過率が減少している。図3のサンプル写真から膜厚が増加するとsampleの文字が見えなくなり透過率が悪くなっていているのが明らかである。太陽電池に重要な赤外光領域の平均透過率は全体・可視光領域の平均透過率よりも高

図4 白金スパッタ時間による Pt 膜の表面 SEM 写真

図5 白金スパッタ時間による Pt 膜の原子間力顕微鏡写真
くなっている。さらに、膜厚を大きくしても 75 nm までは FTO 基板のシート抵抗とあまり変わらず変化は見られなかった。白金膜厚が 150 nm, 225 nm はシート抵抗が減少したがわずかなものであるため太陽電池の効率に影響しないものと考えられる。膜厚が増加するにしたがってシート抵抗は徐々に低下するが太陽電池の効率をあげるためにはシート抵抗を大幅に小さくする必要がある。表面積が大きい試料が性能が良いため、いかに表面積を大きくし多くの短絡電流を流すかということ、また対極と電解液との相性を考えることで還元反応の速度が加速させ性能の良い色素増感太陽電池を作製することが重要である。

このような白金の膜厚が 5 ～ 225 nm の試料を対極として作製した色素増感太陽電池の開放端電圧、短絡電流、フィルファクター、変換効率を求めた。図10に膜厚が 5 nm, 15 nm, 75 nm, 150 nm, 225 nm の白金対極を用いた色素増感太陽電池の電流 - 電圧特性を示す。図11には、各膜厚の対極を用いた色素増感太陽電池の開放端電圧を示す。白金の膜厚が変化しても開放端電圧はほぼ変化していない。これは、2.7 項で記述したように、開放端電圧は電解液と酸化チタンのバンドギャップに依存しており今回の実験では全て同じ電解液と酸化チタンの材料を使用したからである。また、本研究での開放端電圧は約0.6 Vを得ることができた。荒川らは、同じ電解液を使用しており、開放端電圧は約0.7 Vが報告されている（20）。開放端電圧が低い理由として、2.6 項の図を参考に電荷輸送のレドックスから酸化チタンへの 1の拡散と対極での 1の還元反応であると考えられる（21）。図12−14に各膜厚における白金電極の短絡電流、フィルファクター、変換効率を示す。短絡電流は減少傾向にあり、フィルファクターは増加していく傾向にあるが変換効率は同じような傾向が見られない。本実験で最も性能が良かった試料は白金の膜厚が 5 nm の試料を対極として作成した色素増感太陽電池であり、フィルファクターは 0.64, 変換効率が 3.2%である。
さらに、膜厚を大きくしても75 nmまではFTO基板のシート抵抗とあまり変わらず変化は見られなかった。白金膜厚が150 nm, 225 nmはシート抵抗が減少したがわずかなものであるため太陽電池の効率には影響しないと考えられる。膜厚が増加するにしたがってシート抵抗は徐々に低下してくるが、太陽電池の効率をあげるためにはシート抵抗を大幅に小さくする必要がある。表面積が大きい試料が性能が良いため、いかに表面積を大きくし多くの短絡電流を流すかということ、また対極と電解液との相性を考えることで還元反応の速度が加速させ性能の良い色素増感太陽電池を作製することが重要である。

このような白金の膜厚が5~225 nmの試料を対極として作製した色素増感太陽電池の開放端電圧、短絡電流、フィルファクター、変換効率を求めた。

図10 色素増感太陽電池の電流-電圧特性のPt膜厚変化
図11 色素増感太陽電池の開放端電圧のPt膜厚変化
図12 色素増感太陽電池の短絡電流のPt膜厚変化
図13 色素増感太陽電池のフィルファクターのPt膜厚変化
図14 色素増感太陽電池の変換効率のPt膜厚変化

4. 結論

スパッタ法によりFTO基板上に白金膜を作製し、それを対極に用いた色素増感太陽電池を作製し評価を行った。走査型電子顕微鏡により、白金膜厚が5 nm, 15 nm, 75 nm, 150 nm, 225 nmの試料表面を観察し、原子間力顕微鏡でさらに試料の凹凸、表面粗さを観察した。白金膜厚が増加するにしたがって表面積が減少し表面粗さも減少する傾向を示した。透過率測定では、作製した白金の各膜厚試料の透過率、平均透過率を観察した。白金膜はサンプル写真からもわかるように膜厚が増加するにしたがって透過率が減少する。太陽電池に重要な赤外光領域の平均透過率は全体・可視光領域の平均透過率よりも高くなる傾向を示した。電流-電圧特性測定では、白金膜厚が5 nm, 15 nm, 75 nm, 150 nm, 225 nmの試料を対極として色素増感太陽電池を作製し、その開放端電圧、短絡電流、フィルファクター、変換効率を求めた。
変換効率を求めた。白金の膜厚が増加するにしたがって、フィルファクターは増加傾向にあるが短絡電流と変換効率は減少傾向にある。本実験で最も性能の良い試料は、白金の膜厚が5 nmの試料を対極として作成した色素増感太陽電池であり、フィルファクターは0.64、変換効率が3.2%である。

引用文献

1) 酒井節雄：講座現代エネルギー・環境論 電力新報社 (1997) p. 8
2) 吉田隆：21世紀版 薄膜作製応用ハンドブック エヌ・ティー・エス (2003) p. 1136
3) 佐藤政次：透明導電膜の技術 オーム社 (1999) p. 31
4) 豊崎雅久：最新太陽電池技術の徹底検証・今後の展開 情報機構(2008) pp. 11-19
5) NREL: Best Research-Cell Efficiencies
6) 柳田祥三：実用化に向けた色素増感太陽電池 エヌ・ティー・エス (2003) p. 29, p. 66
7) 早瀬修二：色素増感太陽電池の最新技術Ⅱ シーエムシー出版(2013) pp. 113-122
9) 荒川裕則：色素増感太陽電池 シーエムシー出版(2007) pp.103-127
10) 南条正男：走査電子顕微鏡の基礎と応用 日本電子顕微鏡学会 (1983) pp. 2-7
12) 浜川圭弘, 桑野幸徳：太陽エネルギー工学 培風館 (1994) pp. 47-49
13) 浜川圭弘, 桑野幸徳：太陽エネルギー工学 培風館 (1994) p. 36
14) 桑野幸徳, 中野昭一, 岸雄雄, 大西三千: 太陽電池とその応用 パワー社 (1994) p. 47
15) 桑野幸徳, 中野昭一, 岸雄雄, 大西三千: 太陽電池とその応用 パワー社 (1994) pp. 9-11
18) 酒井節雄：講座現代エネルギー・環境論 電力新報社 (1983) p. 33
19) 岩崎宏：色素増感太陽電池 シーエムシー出版(2007) p. 62
20) 荒川裕則：色素増感太陽電池の最新技術Ⅱ シーエムシー出版(2013) pp. 65-66
21) 荒川裕則：色素増感太陽電池 シーエムシー出版(2007) p. 77
真空遮断器を対象とした部分放電検知の劣化診断技術の開発

朝倉 匡俊 a)・岸本 恵修 b)・三宅 琢磨 c)・迫田 達也 d)
壱岐 祐典 e)・前田 健作 f)

Development of Diagnostic Technique of Insulation Deterioration for Vacuum Circuit Breaker by Partial Discharge Detection

Masatoshi ASAKURA, Keisyu KISHMOTO, Takuma MIYAKE, Tatsuya SAKODA
Yusuke IKI, Kensaku MAEDA

Abstract

A lot of vacuum circuit breakers (VCBs) have been installed for a period of high economic growth. Such VCBs are desired to be used until their application limit while maintenance cost should be reduced. Therefore, to realize the diagnostic technique which can be applicable even under the operating condition is important. In this study, partial discharges (PDs) occurred on the insulation material surface of a VCB were detected using an electromagnetic wave (EM) sensor. Characteristics of the detected EM waves were investigated. Based on the results, we made a prototype model with an analyzing program utilizing a LabVIEW.

Keywords: Electromagnetic wave sensor, Partial discharge, Vacuum circuit breaker

1. はじめに

過電流や短絡、断絡電流を瞬時に遮断する真空遮断器（VCB: Vacuum Circuit Breaker）は、事故の拡大を抑える他、電力供給の信頼性の確保を担っている。一般的に、真空遮断器は配電盤(キュービクル)中に格納されており、点検時以外に扉を開けることはほとんどない。そのため、設置環境が塩害地域であったり、高温、高湿度で結露しやすい環境、腐食性ガスや塵埃の付着が多い場所においては、絶縁部の汚損及び劣化による絶縁不良が起こる。すなわち、VCBの絶縁フレームに汚損物の堆積や結露が進行するときとで絶縁フレームの表面抵抗が低下し、部分放電(PD: Partial Discharge)が発生する。同放電が進展することによって、最終的にトラッキング破壊に至る。

ところで、高度情報化においては良質な電気の安定的な供給が強く求められている。その一方で、2016年4月からの電力小売り全面自由化が解禁され、多数の特定規模電気事業者の新規参入が解禁され、多数の特定規模電気事業者の新規参入も始まっている。(2016年4月1日現在で小売電気事業として280件が登録済み)その上で、競争社会を勝ち抜くためには、電力設備の維持、管理、運用、監視などにかかるコスト削減が要求されている。最近では、高度成長期に大量に導入された電気設備が寿命を迎えてきているが、中には寿命年数を超えて使用されているものもある。これらの電気設備は、外見上は問題が見られないものでも、使用年数に応じて劣化が進行している可能性がある。これに対して、寿命年数に達していないものでも、設置環境が過酷な場所であれば、直ぐに故障してしまう可能性もあり、様々な要因で電気設備の寿命は変化する。このような劣化が進行する機器の監視、保守、診断、寿命を評価する手法の一つに、PD検出技術がある。

絶縁破壊の前兆現象であるPDは、絶縁体中の異物やボイド、もしくは絶縁体表面の汚損などにより発生し、振動、音、光、熱、ガスの分解、突発電流、電磁波などの現象を引き起こすため、これらの現象を測定することで劣化の有無を判断することができる。発生初期のPDの放電電荷量が低く、しかも微弱であるため、直接的に診断することは困難であるが、最終的には絶縁破壊に至る。そのため、PD計測は機器の絶縁状態を判定するのに有効な手段である。本研究では、PD発生の際を二重に発生する振動、音、光、ガスの分解、突発電流、電磁波などの現象を引き起こすための、これらの現象を測定することで劣化の有無を判断することができる。発生初期のPDの放電電荷量が低く、しかも微弱であるため、直接的に診断することは困難であるが、最終的には絶縁破壊に至る。そのため、PD計測は機器の絶縁状態を判定するのに有効な手段である。本研究では、PD発生の際を二重に発生する振動、音、光、ガスの分解、突発電流、電磁波のなかで特に電磁波に着目して、VCBが収納されているキュービクル外からPD計測を行い、VCBの劣化診断を行うことを目指している。

本報では、電磁波センサを用いたPD検出による絶縁劣化診断技術の開発のため、模擬電極を用いた基礎検討に加え、診断装置で使用予定のアンテナ特性の評価、診断装置
を構成する上での問題点及び問題点解決方法の検討、以上を踏まえた診断用プログラムも含めた VCB 用絶縁劣化診断装置のプロト開発に関して述べる。

2. 電磁波検出に用いるアンテナ比較

VCB 用絶縁診断装置を構成する上で、使用するアンテナの選定は重要である。今回用いた 2 種類のアンテナを図 1 に示す。図 1(a)のアンテナ(第一電波工業社製、Model: RHM-8B、以降はアンテナ A と記す)は全体長が 1.78 m と長く、材質が金属であったため、工場内や変電所内に使用するには不向きであった。そこで、図 1(b)のアンテナ(Watson 社製、Model: W-881、以降はアンテナ B と示す)を取り入れ、同アンテナの特性を確認した。なお、新アンテナは全体長が 0.41 m とこれまでのアンテナの約 4 分の 1 の長さであり、材質も非金属であるため採用した。また、両アンテナともモノポールアンテナである。

2.1 実験方法

図 2 に実験装置の概要を示す。商用周波である 60 Hz の交流電圧 0.9～1.4 kV を図 3 に示す模擬放電電極に印加した。模擬放電電極は真鍮で作製されており、電極形状は針対平板電極である。さらに平板電極は厚さ 1 mm のガラスで覆われている。模擬放電電極はキュービクル(横幅 900 mm、奥行き 840 mm、高さ 1150 mm、鉄板厚 2.3 mm)内に配置されている。放電により発生した放電電流は、高周波 CT(CTセンサ: PRODYN Technologies 社製、Model: I-125-1HF)にて検出した。放電により発生した放射電磁波は、前述した 2 種類のアンテナで検出した。放射電磁波と電流電流は、オシロスコープ(YOKOGAWA 社製、Model: DLM2034)にてサンプリング速度 62.5 GS/s で取得した。また、放射電磁波検出時には、CTセンサにて検出した放射電流をトリガとして利用し、放射電流が発生した瞬間の放射電磁波を検出した。

2.2 実験結果及び考察

図 4 に両アンテナで検出した無放電時の信号波形を示す。さらに、図 4 の信号波形を FFT(Fast Fourier Transform)処理した波形を図 5 に示す。図 4 より、無放電時に検出された信号強度の平均値は 0.001 V 程度とかなり低いことが確認された。また、図 5 より、無放電時に検出した信號波形の周波数特性は、0～100 MHz まで分布していることが確認された。一般に、無放電時(環境ノイズ)は、特定の周波数成分を持たないため、図 5 のような結果が得られたと考えられる。
真空遮断器を対象とした部分放電検知の劣化診断技術の開発

2. を踏まえた診断用プログラムも含めたを構成する上での問題点及び問題点解決方法の検討、以上

ナの選定は重要である。今回用いたCT（Current Transformer）配置されている。放電により発生した放電電流は、高周波で覆われている。模擬放電電極はキュービクルた。模擬放電電極は真鍮で作製されており、電極形状は針0.9交流電圧に示す。図1。RHM-8B

磁波は、前述したを取り入れ、同アンテナの特性を確認した。なお、新アンテナ両アンテナともモノポールアンテナである。

た瞬間の放射電磁波を検出した。

った放電電流をトリガとして利用し、放電電流が発生し

にてサンプリング速度と放電電流は、オシロスコープにて測定装置を構成するこ

んアンテナB、以降はアンテナAである。

図6に放電電荷量130 pC 発生時に検出した信号波形を示す。さらに、図6の信号波形をFFT処理した波形を図7に示す。図6より、アンテナAでは最大約0.015 V の信号を、アンテナBでは最大約0.01 V の信号を検出していことが確認された。無放電時と比較すると、検出波形に明確な変化が見られた。このことにより、図6の波形では、部分放電により発生した放射電磁波を検出していると判断した。また、図7より、アンテナAでは10～40 MHz 付近の周波数成分を、アンテナBでは10～20 MHz、40 MHz 付近の周波数成分が確認された。これにより、無放電時と比較すると、明らかに周波数成分が大きいことが確認された。このことより、部分放電により発生する放射電磁波には、20 MHz、40 MHz 付近の周波数成分が含まれていることが確認された。以上の結果より、無放電時の信号強度との信号強度比較及び、10～40 MHz 付近の周波数成分強度に着目することで、部分放電検出の可能性が示唆された。

図8、アンテナAとアンテナBにおける放電電荷量と電磁波信号強度の関係を示す。両アンテナを比較すると、どちらも線形性を確認できるが、同じ放電電荷量に対する電磁波信号強度は、アンテナAの方が高いことが確認された。この原因は、アンテナAとアンテナBの周波数帯域幅の違いと考えられる。アンテナAの周波数帯域幅は7～50 MHz であるのに対して、アンテナBの周波数帯域幅は25～1900 MHz である。図7より、部分放電により発生する放射電磁波には、10～40 MHz付近の周波数成分が含まれていることが明らかになっているため、アンテナBでは10 MHz付近の周波数成分が周波数帯域幅の範囲外であることが分かり、従って、アンテナAの方が、同じ放電電荷量に対する電磁波信号強度が高くなったと考えられる。

しかし、前述したように、アンテナAはアンテナ長が長い、アンテナ部も金属であるため、実フィールドでの使用は適さない。一方でアンテナBは、電磁波信号強度としてはアンテナBに劣るが、アンプによる増幅を行うことで電磁波信号強度の問題は解決でき、かつアンテナ長がアンテナAの約1/4程度で、アンテナ部が非金属であることを考慮して、VCB 用劣化診断装置に用いるアンテナは、アンテナBが適していると判断した。
に、測定装置がすべて PC 上で動作するため、外部電源も不要となり、測定環境に電源がない場所でも測定可能であることもメリットである。しかし、LabVIEW を使用する際は、アンテナからの電気信号を取得する際にインピーダンスマッチングに留意する必要がある。LabVIEW を使用することで、デジタルコンピュータが PC に対応するため、電流計や光源などの各測定機器を相互に接続して共に測定できる。しかし、アンテナの出力インピーダンスは 50 Ω であり、インピーダンスが不整合となる。そこで、アンテナを出力インピーダンスは 50 Ω で、A/D コンバータの入力インピーダンスは 1 MΩ である、インピーダンスが不整合となる。そのため、図 9 のような歪みが測定波形に含まれる。これを解決するために、インピーダンス整合器 (Tektronix 社製、Model: 011-0049-02) を用いた。インピーダンス整合器を使用することで、出力される信号強度が約 50% 低下するが、整合器の後にアンプを追加して信号の出力低下を解消した。

図 9. インピーダンスマッチングが不整合の状態。

4. VCB 用絶縁劣化診断装置のプロトタイプ

VCB 用絶縁劣化診断装置のプロトタイプを試作した。このプロト機の特徴は、測定から解析まで 1 台の PC で行うことができる点にある。さらに、測定データをデジタルデータとして保存し、以前測定したデータと比較できる傾向管理機能も搭載することとした。プロト機の構成は、前章で述べた W-881 アンテナ、アンプ(COSMOWAVE 社製、Model: LNA631-WS, 20 dB 増幅可能)、アンプ電源(アンプ電源用電池及び DC-DC コンバータを含む)、インピーダンス整合器、A/D コンバータ(National Instruments 社製、Model: USB-5133)、LabVIEW 搭載の PC である。プロト機の劣化診断アルゴリズムを図 10 に示す。劣化診断は、環境測定、簡易診断、精密診断の 3 つのモードがある。それぞれのモードでは、測定目的や保存するデータの種類が異なる。いずれの測定モードにおいても、放電による放射電磁波検出感度の向上を目的として、デジタルバンドパスフィルタ処理などの処理プログラムを付与した。

環境測定の目的は、測定場の電磁ノイズ信号の検出及び電磁ノイズ信号の周波数解析である。ここでは、電圧 1 周期分の信号波形、信号波形の FFT 解析波形、信号波形の最大値、信号波形の平均値を測定画面上に表示し、取得日時、信号波形の最大値、信号波形の平均値、FFT 解析波形を保存する。1 回の測定に要する時間は約 30 秒である。

簡易診断の目的は、放電の有無を検知することである。簡易診断では、交流波 5 周期分の信号波形、信号波形の FFT 解析波形、信号波形の最大値、信号波形の平均値を測定画面上に表示し、取得日時、信号波形の最大値、信号波形の平均値を保存する。放電発生有無の判定基準は、環境測定で測定された信号強度と、放電ビーグ応答波形を FFT 解析した際、5 周期分全てを FFT 解析すると、放電ビーグ応答波形がゼロに近い場合は、正確な周波数成分が得られない。そのため、信号検査の際に、トリガ検出時の前後 1000 ns の波形を抽出することで、解析の際に必要な信号波形を抽出する。さらに、デジタルバンドパスフィルタにより、放電による周波数成分以外の信号を抑えることができる。以下の 2 つの処理により、10~40 MHz の周波数帯域において顕著な周波数成分が存在するか否かで判定する。なお、信号波形を FFT 解析する際、1 周期分全てを FFT 解析すると、放電ビーグ応答波形がゼロに近い場合は、正確な周波数成分が得られない。そのため、信号検査の際に、トリガ検出時の前後 1000 ns の波形を抽出することで、解析の際に必要な信号波形を抽出する。

精密診断の目的は、簡易診断において放電可能性が認められる場合に、より詳しく測定を行い、検出した波形が放電による発光の有無か否かを傾向管理で判断することである。精密診断では、信号波形の信頼情報、信号波形の最大値、信号波形の平均値を測定画面上に表示し、取得日時、信号波形の最大値、信号波形の平均値、相関情報を保存する。
4.1 実験方法

前述した劣化診断アルゴリズム及び測定装置類を用いたプロト機におけるPD検知実験を行い、放電を正確に検出可能な確認実験を行った。図11に実験装置の概要を示す。商用周波である60Hzの交流電圧1.3〜1.8kVを図3に示す模擬放電電極に印加した。模擬放電電極はキュビクル内中央に配置されている。放電により発生した放電電流は、高周波CTセンサで検出し、オシロスコープで観測した。図11の網かけされている部分がプロト機の部分である。電磁波の検出及び解析にはこのプロト機を用いて測定を行った。

図12. 環境測定の結果。

4.2 実験結果及び考察

図12にプロト機における環境測定結果を示す。環境測定は、無放電時に測定を行っている。同図より、無放電時には特徴的な信号強度は確認されなかった。この時の平均ノイズ最大強度は、0.0136Vであった。また、FFT解析結果より、特徴的な周波数成分は確認されなかった。

図13. 簡易診断の結果。

図13に放電電荷量約50pC発生時の簡易診断結果を示す。同図より、検出された信号が約8ms間隔で発生していることが確認された。これは、印加電圧である交流電圧60Hz(周期16.67ms)の半周期毎で発生していることが推定できる。

図14. 精密診断の結果。

以上の結果より、簡易診断及び精密診断にて検出されている信号が、PDにより発生している放射電磁波であることが確認でき、プロト機において放電電荷量約50pCのPDを検出できていると判断できる。

5. 結論

本報では、電磁波センサを用いたPD検知による絶縁劣化診断技術の開発のため、模擬電極を用いた基礎検討に加え、診断装置に使用するアンテナの比較、診断装置を構成する上での問題点及び問題点解決方法の検討、以上を通じたVCB用絶縁劣化診断装置のプロト機開発を行った。アンテナは電極を非金属である上、アンテナ長も長くないもの
のを選定し、放電による放射電磁波の検出に問題がないことを確認した。VCB用絶縁劣化診断装置で、LabVIEWを利用した絶縁劣化の傾向を把握するための処理プログラムを有するプロト機は、放電電荷量約50 pC発生時のPDによる放射電磁波の検出が可能であることを明らかにした。

参考文献

電磁波センサを用いた配電機器内部で生じる部分放電の検出

白浜 優吾 a) 平島 俊紀 b) 中村 友哉 a) 迫田 達也 c)

Detection of Partial Discharges in Electric Power Distribution Equipment using an Electromagnetic Wave Sensor
Yugo SHIRAHAMA, Toshiki HIRASHIMA, Tomoya NAKAMURA, Tatsuya SAKODA

Abstract

To diagnose electric power apparatus under system in operation, to detect partial discharge (PD) which refers predictive phenomenon on insulation deterioration of the power apparatus is useful. An electromagnetic (EM) wave sensor technique is widely accepted for the detection of PDs. We installed a PD source in a 6.6 kV mold transformer tank. EM waves owing to the PDs were measured from the outside of the tank by an EM sensor. As the result, we successfully detected PDs with the magnitude of less than 10 pC and confirmed a linearity between the magnitude of EM signal and electrical charge of PD.

Keywords: Electromagnetic wave sensor, Mold transformer, Partial discharge

1. はじめに

高度情報化社会には、高品質の安定した電源が強く求められている1)。一方、限界まで電力機器を使用し、維持費を削減することが望まれる。このような観点から、運転中の電力機器や配電系統に適用可能な診断・監視技術を確立すべきである2)。なお、変圧器も安定した電力供給に重要な役割を果たしている。変圧器の劣化は、過電圧、吸湿、オーバーロード、およびPD(Partial Discharge)によって引き起こされる。また、絶縁抵抗の低下に伴い、コロナ放電が発生しやすい。放電は、アークライトの発生によって最終的に電気的故障を引き起こす可能性がある。このような電気的故障を防止するために、放電のオンライン検出は絶縁状態を評価するのに有用である。

PDによって生じた広い周波数帯域を有する電磁(EM:Electromagnetic)波は、EM波センサーを用いて検出可能である3)。特に、HF (3 MHz~30 MHz)、VHF (30 MHz~300 MHz)、UHF (300 MHz~3 GHz) の EM 波センサーの感度は高いことが一般的に理解されている 4)。しかし、電磁波ノイズ除去は EM波センサ技術の欠点の 1つである。すなわち、無線通信による様々な EM 周波数帯域と、オンライン監視のための電気的ノイズとが測定され、感度が効率的に低下する。従って、PD信号から電気的ノイズを除去する信号処理や、ノイズと干渉を回避すべき周波数帯域の設定が強く求められている。

そこで、電力機器を適切な時期に交換するためには、絶縁体の監視を傾向管理を行えることが望ましい。従って、PD信号から電気的ノイズを除去する信号処理や、ノイズととの干渉を回避すべき周波数帯域の設定が強く求められている。すなわち、実際の現場において、前回のデータと比較して劣化の進行状況を把握することができるものが望ましい。そこで、検出されたEM波信号は、アナログデジタル変換器 (ADC) を介してデジタルデータに変換される。サンプリングレートが 100 MHz 未満の場合、低価格でコンパクトな ADC が利用できる。ADC は監視システムの価格の大部分を占めるため、低コストで監視システムを実現する観点から、HF や VHF の有効利用が望ましい。

2. 実験方法および実験条件

図1 に、EM波信号とPD電流の測定のための実験装置を示す。長さ 1780 mm の EM 波センサーにより検出された EM 波信号は增幅せず、デジタルオシロスコープにより保存した。その後、高速フーリエ変換 (FFT) による解析を行った。FFT を有効活用することにより、正確な周波数特性と強度を評価することができる。CT (Current Transformer) センサを用いて、数十 ns のパルス幅を有する PD電流を検出し、デジタルオシロスコープでサンプリング速度 62.5 GS / s で記録した。印加電圧は商用周波数 60 Hz の交流電圧を 0.5 kV 〜2.0 kV の範囲で設定した。
図1. 実験装置の構成

図2に、実験で用いた計器用変成器の外観を示す。図3には変成器容器内部に配置したPD源である電極とその寸法図を示す。電極は、真鍮製で直径10 mmの針状電極と、直径10 mmの平面電極からなり、平面電極は厚さ2 mmの石英ガラスで覆われている。電極のギャップ長は、0.1 mm未満に設定した。針状電極に制限抵抗を介して交流電圧を印加し、出力電圧を高電圧プローブで測定した。

図4に、変成器容器内部におけるPD源の配置上面図を示す。PD源とEM波センサの先端との距離は1060 mmである。PD源の高さは容器底面から400 mmとし、EM波センサも同様とした。また、EM波センサは二次端子箱に対向するように配置した。

図5. 実験に使用したEM波センサ（RHM8B）

表1 アンテナの特性

<table>
<thead>
<tr>
<th></th>
<th>RHM8B</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造元</td>
<td>第一電波工業</td>
</tr>
<tr>
<td>帯域</td>
<td>7〜50 MHz</td>
</tr>
<tr>
<td>長さ</td>
<td>0.5〜1.78 m</td>
</tr>
<tr>
<td>重さ</td>
<td>285 g</td>
</tr>
</tbody>
</table>

3. 実験結果および考察

図6(a)にEM波センサで取得したノイズ波形を示す。さらに、ノイズ波形をFFT処理したものを図6(b)に示す。図6(a)より、ノイズ信号強度はPDによる信号と比べると小さくなる。周波数成分は100 MHzまで様々に分布しているが、10-16 MHz、50 MHz、90 MHzに周波数ピーキーが現れた。10-16 MHz、90 MHzの周波数成分は、船舶・航空通信に使用されており、50 MHzの周波数成分は、50-54 MHzのアマチュア無線帯域に起因する可能性がある。図7に、1 kVの交流電圧を電極に印加したときに、CTセンサにより検出したPDの電流波形を示す。半値全幅は約30 nsであり、電荷量は10 pCである。本実験では、印加電圧とギャップ長を変えることにより、5 pC〜80 pCの範囲でPDの大きさを調整した。
図1は、実験装置の構成図2に、実験で用いた計器用変成器の外観を示す。図3には変成器容器内部に配置したPD源である電極とその寸法図を示す。電極は、真鍮製で直径10 mmの針状電極と、直径10 mmの平面電極からなり、平面電極は厚さ2 mmの石英ガラスで覆われている。電極のギャップ長は、0.1 mm未満に設定した。針状電極に制限抵抗を介して交流電圧を印加し、出力電圧を高電圧プローブで測定した。

図2計器用変成器の概観

(a) 模擬放電電極
(b) 寸法図

図3は、変成器容器内部におけるPD源の配置上面図を示す。PD源とEM波センサの先端との距離は1060 mmである。PD源の高さは容器底面から400 mmとし、EM波センサも同様とした。また、EM波センサは二次端子箱に対向するように配置した。

図4電極配置上面図

図5は今回用いたEM波センサを、表1にアンテナの特性を示す。

図6(a)にEM波センサで取得したノイズ波形を示す。さらに、ノイズ波形をFFT処理したものを図6(b)に示す。図6(a)より、ノイズ信号強度はPDによる信号と比べると小さくなる。周波数成分は100 MHzまで様々に分布しているが、10-16 MHz、50 MHz、90 MHzに周波数ピークが現れた。10-16 MHz、90 MHzの周波数成分は、船舶・航空通信に使用されており、50 MHzの周波数成分は、50-54 MHzのアマチュア無線帯域に起因する可能性がある。図7に、1 kVの交流電圧を電極に印加したときに、CTセンサにより検出されたPDの電流波形を示す。半値全幅は約30 nsであり、電荷量は10 pCである。本実験で印加電圧とギャップ長を変えることにより、5 pC〜80 pCの範囲でPDの大きさを調整した。

次に、放電電荷量が80 pCの場合の信号波形を図8(a)に示す。さらに、その信号波形をFFT処理したものを図8(b)に示す。図8(a)に示すノイズ時と比較しても明らかに検出波形に差異が見られるため、PDによる放射EM波を検出したと判断した。EM波信号の強度はノイズ強度の約10倍である。また、図8(b)に示すように、20 MHz〜40 MHzでは明らかに周波数成分が確認されている。図8(b)に示す、ノイズ信号と比較しても明らかに周波数成分が大きいためPDによるものと判断した。つまり、PDにより発生する放射EM波には20 MHzおよび40 MHz付近の周波数成分も含まれていると考えられる。20 MHz〜40 MHz付近の周波数成分に着目することで、PD検知の可能性が示唆された。約50 MHzに対する約32 MHzの周波数成分比は非常に大きいため、バンドパスフィルタの有用性は小さい。しかし、後述するように、ノイズ強度がEM波信号と同じ場合では、バンドパスフィルタを用いたノイズ除去が必要となる。

放電電荷量10 pC時の信号波形を図9(a)に示す。さらに、放電電荷量10 pC時の信号波形をFFT処理したものを図9(b)に示す。PDによるEM波信号は図8(a)に示す80 pCの場合と比べて小さい。また、ノイズ強度と信号強度の比は低く、この場合、バンドパスフィルタを用いたノイズ除去が必要となる。

図10は、図9の信号波形を20 MHz〜45 MHzでバンドパス処理し、さらに拡大した波形で、図10(a)の0 nsは、図9(a)の500 nsと一致する。図10(a)に示すように、200 ns付近でPDによるEM波信号が存在する。図10(b)より、50 MHzの周波数成分はまだ残っているが、スペクトル強度は図9(b)に示すものに比べて低くなり、約50 MHzに対して約32 MHzの周波数成分は大きくなる。ちなみに、50 MHzの周波数成分は、50-54 MHzのアマチュア無線帯域に起因する可能性がある。
図11に20 - 45 MHzにおいてバンドパス処理を行った放電電荷量とEM波センサ強度の関係を示す。センサ強度は平均ノイズ成分値である約0.2 mVを除いた値である。この図からわかるように、5 pCの大きさからPDを正常に検出できた。

図11. 放電電荷量とEM波センサ強度の関係

4. 結論

本報では、電力機器の劣化診断装置の開発として、変成器容器内部で模擬電極を用いて発生させた放電の検知を行った。EM波センサを用いた測定の結果、ノイズの周波数成分は100 MHzまで様々に分布しているが、10-16 MHz、50 MHz、90 MHzに顕著に現れること分かった。そして、ノイズ信号強度と同レベルの放電信号が得られた場合、バンドパスフィルタを用いたノイズ除去が必要となる。バンドパスフィルタを20 MHz〜45 MHzで設け、周波数分布で比較した結果、より明確な判別が可能となることを明らかにした。さらに、5 pC程度の電荷量であってもEM波センサにより検出可能であることを明らかにした。

参考文献

絶縁体内部で発生する部分放電の劣化特性

平島 俊紀 a)・中村 友哉 b)・白浜 優吾 b)・迫田 達也 c)

Degradation Characterization of Partial Discharge Occurring in Void

Toshiki HIRASHIMA, Tomoya NAKAMURA, Yugo SHIRAHAMA, Tatsuya SAKODA

Abstract

Considering the latest development of advanced information society, a stable power supply should be maintained. For transmission and distribution lines, cross-linked polyethylene (XLPE) cable plays an important role in distributing the stable electric power to customers. Electric failure for the XLPE cable decreases year by year because of progress of manufacturing. However, at joint and terminal sections of XLPE cables, partial discharges (PDs) occur in defects of insulating materials. Measurement of partial discharges (PDs) at joint and terminal sections in XLPE cables is useful for stable power supply because defects at joint and terminal sections occupy 30% of electric failures in Japan. The purpose of our study is establishment of an insulation deterioration diagnostic technique based on detection of PDs using acoustic emission (AE) sensors. We here evaluated temporal variation in AE signal and discharge current under a difference electric field. AE sensor was used for detecting AE signal reflecting elastic wave due to discharge. Frequency of a power source was 1kHz, which was about 16 times higher than that of a normal operating source and increased generation of PD per unit time. Based on the results, we showed that the incidence rate of AE signal and an etching rate increased exponentially with increasing the electric field.

Keywords: Partial discharge, Void, Acoustic emission, Electric field

1. はじめに

高度情報化社会の発展により、電力会社には良質な電気の安定供給が強く求められている。架橋ポリエチレン(XLPE)ケーブル1)も電力の安定供給を担っており、1980年からの三層同時押出方式の製造方法の普及や、クリーンなコンパウンドの開発、乾式架橋技術の発展等の製造技術の進歩によりケーブル全体の事故は年々減少している。しかし、XLPEケーブルの中間接続部及び端頭接続部では、部材内部及び界面での異物の混入や傷等による空隙が形成されることで、その箇所で部分放電が発生する。この部分放電はXLPEケーブルの絶縁性能を低下させ、最終的に短絡事故に至る。XLPEケーブルで起こっている電気事故の約30%は中間接続部及び端頭接続部における事故であるため、短絡事故の予防対策である部分を早期に検出することは重要である。そこで、著者らは、AE(Acoustic emission)法を用いたXLPEケーブル接続部・端頭部部材内部で発生する部分放電検出に関するS/N比を容易に向上でき、固体材料の表面あるいは内部で発生する微小な放電検出に適用している。

本研究では、電力ケーブル接続部材内部で形成されたボイドの内部で発生する部分放電に着目した。異なる電界強度下における劣化進行に伴う信号の変化について検討を行った結果について述べる。

2. 実験方法

図1に実験装置の概要を、図2にテストビースの概要を示す。試験体には厚さ0.5mmの絶縁ゴム板(100 mm×50 mm)を使用し、これに先端径2 mmの棒状やすりを用いてゴム板に直径が2 mmになるように穴を空け、これを模擬ボイドとした。径0.55 mmの金属針を高電圧電極として、直径30 mmの銅製の平板を接地電極として絶縁ゴム板の裏側に配置した。電源にはノーロナ可変周波数耐圧試験電源(総研電気株)製DAC-WT-50を使用し、電源周波数を1 kHzとし、周波数を上昇させること
で劣化を加速させた。また、本試験では同一電界強度下で
試験を実施することで、実験条件を電界計算ソフト
COMSOL を用いて算出した。表 1 に電界強度より設定し
た各試験条件を示す。COMSOL による算出結果から、印
加電圧と絶縁ゴムの厚みのパラメータが異なっている。ま
た、表 1 に示す電界強度とは、ボイド内における最大電界
強度を表す。部分放電による弾性波の検出には、広帯域型
AE センサ(AE-900S-WB)、エヌエフ回路設計ブロックを
使用し、放電源から約 15 mm の位置に配置した。取得した
AE 信号は 90 dB(プリアンプ: 40 dB、ディスクリミネー
タ: 50 dB)増幅し、A/D 変換器を介して、100MS/s のサン
プリングで PC で取得した。また、取得の際にディスクリ
ミネータにて、バンドパスフィルタ(BPF)処理(HPF:50 kHz、
LPF: 500 kHz)を施している。また、接地電極に流れ込む放
電電流は CT(Current transformer, 総研電気(株)製 1-125-1
HF)を介してオシロスコープで取得した。

図 1. 実験装置の概要。

図 2. テストビースの概要。

表 1 実験条件。

<table>
<thead>
<tr>
<th>No.</th>
<th>電界強度 [kV/mm]</th>
<th>電圧 [kV]</th>
<th>絶縁ゴム厚 [mm]</th>
<th>ボイド直径 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>25.0</td>
<td>3.5</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>28.0</td>
<td>4.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>33.6</td>
<td>3.5</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>0.2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

3. 実験結果及び検討

図 3 に典型的な AE 信号波形と周波数スペクトルを示し、
図 4 に典型的な電流波形と周波数スペクトルを示す。図
3(a)より、パルスが 0.5 ms 間隔(1 kHz の半周期無)で検出
されており、且つ図 3(b)より、スペクトルピークを 70
kHz で検出している。部分放電による信号は、60~90 kHz
の成分を多く含むことが明らかとされている。次に、
本実験において部分放電信号を検出していると考える。加
えて図 2.4 より、検出した電流波形のパルス幅は 20 ns
程度であり、且つ図 4(b)よりスペクトルピークの位置は
32.5 MHz で観察される。放電による電流波形のパルス幅は、
20~50 ns とされていることから、スペクトルのピーク位置
は 20~50 MHz 程度になると考えられる。そのため、電流
波形からも部分放電電流の検出を確認した。

(a) AE 信号波形 (b) 周波数スペクトル(≦f=10 kHz)

図 3. 典型的な AE 信号波形。

(a) 電流波形 (b) 周波数スペクトル(≦f=500 kHz)

図 4. 典型的な放電電流波形。

次に、図 5 及び図 6 に各試験条件より得られた AE 信号
強度及び放電電荷量の時間変化を示す。図 5 より、電界強
度の大きさに関わらず、劣化の進行に伴い増減を繰り返し
ていることが観察され、電界強度が低い場合に絶縁破壊が
ある直前の信号強度の変化が顕著に見られる。また、図 6 より、AE 信号強度の変化と同様であり、
電界強度の大きさに関わらず、電界破壊として増減を繰り返
しながら徐々に増加し絶縁破壊に至った。また、電界強度
が低い場合の方が劣化の進行に伴う変化が顕著に見られ
た。よって、AE 信号強度及び放電電荷量の点では、電界
強度が異なることで劣化の進行に伴う信号の変化は見ら
れないことが分かった。
緑体内部で発生する部分放電の劣化特性

進行速度は緩やかであるが、ある時間を境に劣化の進行速度は急速になる傾向があることが分かった。また、電界強度が高くなる場合は、課電開始から経過した1時間までには十分高度の信号を検出しており、一定の速度で劣化が進行していると考えられる。以上から、AE信号の検出数の点では、電界強度の大きさが異なることで、劣化の初期状態において、劣化の進行速度は異なり、電界強度が低い場合の方が高い場合と比べて、劣化の進行を評価しやすいことが分かった。

図5. AE信号強度の時間変化。

図6. 放電電荷量の時間変化。

次の図7にAE信号の検出数を示す。電界強度が低い場合は、課電開始から時間経過に伴い、検出数は増減を繰り返しながら増加していく傾向が見られ、図7(a)においては、課電開始時と終了時を比較した場合、1時間当たりの取得数に約17倍の違いが見られた。対して、電界強度が高くなる場合、図7(c)及び図7(d)より、課電開始から終了時まで増減は繰り返しているものの、検出数は約1~1.2倍程度しか変化していないことが分かる。また、単位時間あたりに検出した信号を累積した結果、電界強度が低い場合、劣化のモードはある時間を境に2つに分かれ、課電開始時は劣化の

4. 考察

前節で述べた結果から、電界強度に関わらず、いずれも課電開始時から終了時まで増減を繰り返しながら劣化が進行している傾向が見られた。この増減が起きた原因について検討する。まず、信号強度の低下及び検出数の減少について検討する。図8に試験前後の試料表面の様子を示す。図8より、試験前後で模擬ボイド内に白い粉末状の物質が析出されていることが見られた。この物質が信号の減少に影響を与えていたのではないかと考え、SEM-EDXを用いて、試料の表面分析を行った。図9に、図8(b)に示す試料を対象として、SEMで観察した結果を示し、表2にSEM-EDXより試験前後の表面分析した結果を示す。図9より、模擬ボイド中心部から沿面方向へ放電が分散してい
の成分は試料に放電を与えることで減少しているが、この酸化物が信号の減少に影響を及ぼしたのではないかと考える。表面分析結果から、図8(b)で見られる白い粉末状の物質は酸化物である可能性が考えられ、これは試料内で発生させた放電は起因して析出したものであると考える。そして、この酸化物が信号の減少に影響を及ぼしたのではないかと考える。

図8. 試料表面の様子

図9. 図8(b)のSEM画像

図10. 絶縁ゴムの厚み - 放電電荷量

<table>
<thead>
<tr>
<th>元素</th>
<th>原子比 (%)</th>
<th>原子比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>59.63</td>
<td>72.27</td>
</tr>
<tr>
<td>O</td>
<td>20.40</td>
<td>18.56</td>
</tr>
<tr>
<td>Na</td>
<td>0.80</td>
<td>0.51</td>
</tr>
<tr>
<td>Mg</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Al</td>
<td>4.05</td>
<td>2.18</td>
</tr>
<tr>
<td>Si</td>
<td>3.91</td>
<td>2.03</td>
</tr>
<tr>
<td>S</td>
<td>1.59</td>
<td>0.72</td>
</tr>
<tr>
<td>Cl</td>
<td>3.78</td>
<td>1.55</td>
</tr>
<tr>
<td>Ca</td>
<td>5.60</td>
<td>2.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>原子比 (%)</th>
<th>原子比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.40</td>
<td>8.06</td>
</tr>
<tr>
<td>O</td>
<td>43.93</td>
<td>60.46</td>
</tr>
<tr>
<td>Na</td>
<td>2.63</td>
<td>0.99</td>
</tr>
<tr>
<td>Mg</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>Al</td>
<td>3.04</td>
<td>2.76</td>
</tr>
<tr>
<td>Si</td>
<td>6.91</td>
<td>5.64</td>
</tr>
<tr>
<td>S</td>
<td>8.24</td>
<td>6.46</td>
</tr>
<tr>
<td>Cl</td>
<td>5.33</td>
<td>1.22</td>
</tr>
<tr>
<td>Ca</td>
<td>24.53</td>
<td>13.48</td>
</tr>
</tbody>
</table>

次に、信号が増加した要因について検討する。図6で見られるように、電界強度の大きさに関わらず、放電電荷量は徐々に増加している。そこで、劣化に伴う放電強度の増加が信号強度の増加及び検出数の増加に影響していると考えたので、検討した。図10に絶縁ゴムの厚みと放電電荷量の関係を示したものを示す。図10に示す放電電荷量は、放電開始電圧に達した時に検出した放電電流から算出したものである。図10より、絶縁ゴムの厚みが薄くなる、つまり劣化の進行に伴い、放電電荷量が増加することが分かり、ゴムの厚みが0.20 mmから0.10 mmに変化する際、約3.8倍電荷量は増加している。加えて、本実験の電極系において、外部電圧が複合絶縁系に印加されているから、絶縁内での放電は持続的に発生する。そのため、放電強度の增加と放電の持続的な発生が複合することで、AE信号強度が増加し、検出数も併せて増加したのではないかと考える。

図11に各電界強度におけるAE信号の発生レートを、図12に各電界強度におけるエッチングレートを示す。図11より、縦軸に示す信号の発生レートは商用周波数換算値としている。ボイドの大きさによりらず、電界強度が高くなるにつれ、信号の発生レートは高くなる傾向となった。加えて、ボイド径が1 mmの場合に着目すると、電界強度の上昇と共に、発生レートも指数的に上昇しており、ボイドの大きさが等しい場合、電界強度が高くなるにつれ、信号の発生レートは指数的に上昇するのではないかと考える。次に、図12より、縦軸に示すエッチングレートは、絶縁破壊に至るまでの劣化の進行速度を一定として算出したものである。各電界強度におけるエッチングレートを算出した結果、ボイドが大きい場合、電界強度が高くなる場合でも、エッチングレートは低い結果が得られている。これは、本実験で使用した電極系が影響したのではないかと考える。本実験の電極系は針平板とであり、ボイド径を拡大したことで、図9(a)に示すように、放電が沿面方向に分散しやすくなり、沿面方向への劣化の進行速度は低かったため、電界強度が高くなるときも、エッチングレートが低くなったのではないかと考える。ボイド径が1 mmの場合に着目すると、電界強度の上昇と共に、エッチングレートも指数的に上昇しており、ボイド
の大きさが等しい場合、信号の発生レートを同様に、電界強度が高くなるにつれ、エッチングレートは指数的に上昇するのではないかと考える。

図11. 各電界強度におけるAE信号の発生レート

図12. 各電界強度におけるエッチングレート

5. 結論

電力ケーブル接続部材内部で形成されたボイドの内部で発生する部分放電に着目し、異なる電界強度下における劣化進行に伴う信号の変化について検討を行った。まず、AE信号強度及び放電電荷量に着目した時、課電開始から終了時まで増減を繰り返しながら徐々に増加していく傾向が見られ、劣化に伴う電界強度の違いによる変化はないものと考えられる。次に、AE信号の検出数において、電界強度の大きさが異なることで、劣化の初期状態において、劣化の進行速度は異なり、電界強度が低い場合の方が劣化の進行を評価しやすいことが分かった。

また、各電界強度において、信号の発生レートに着目した時、ボイドの大きさが等しい場合、信号の発生レートは、電界強度が高くなるにつれ、指数的に上昇するのではないかと考えられる。加えて、エッチングレートにおいて、ボイド径及び電極間の影響から、電界強度が高くなる場合よりも、ボイドが大きいとエッチングレートは低いかが、ボイドの大きさが等しい場合は、電界強度が高くなるにつれ、エッチングレートは指数的に上昇するのではないかと考える。

参考文献
1) 電気学会: 電気・配電 改訂版、オーム社、2000。
2) 電気学会: 電気設備の診断技術、オーム社、2003。
3) 植月: 高電圧工学、コロナ社、2007。
4) 大津: アコースティック・エミッションの特性と理論 第2版、森北出版、2005。
5) 特別高圧 CVケーブル絶縁劣化形態と絶縁診断技術の動向、電気学会技法部、No.266、1998。
6) 高電圧試験ハンドブック、オーム社、1983。
7) 杉浦、中村、田村、三宅、迫、田辺、森田、川越、杉浦： "EPゴムシートを用いた周波数加速劣化試験で得られるAE信号の特性 "、電気関係学会九州支部連合大会、2012年9月
Characterization of Acoustic Emission Signal from a Rubber Sheet during a Tracking Deterioration Test
Tomoya NAKAMURA, Yugo SHIRAHAMA, Toshiki HIRASHIMA, Tatsuya SAKODA

Abstract

Measurement of partial discharges (PDs) at joint and terminal sections in cross-linked polyethylene (XLPE) cables is useful for stable power supply because defects at joint and terminal sections occupy 30% of electric failures in Japan. The purpose of our study is establishment of an insulation deterioration diagnostic technique based on detection of PDs using acoustic emission (AE) sensors. We here evaluated temporal variation in AE signal intensity, characteristics of frequency spectra and phase of the AE signal for tracking deterioration. The results showed that the distribution of electric field strongly influenced tracking deterioration characteristics in electrode shape.

Keywords: Creeping discharge, acoustic emission, tracking, Cross Linked Polyethylene Insulated Vinyl Sheath Cable

1.はじめに

現在、電力ケーブルの主流は架橋ポリエチレン絶縁ビニルシースケーブル（CVケーブル: Cross Linked Polyethylene Insulated Vinyl Sheath Cable）であり、電力ケーブルの全出荷量の約90%を占めている。製造技術に進歩によりCVケーブルの接続部、終端部での事故が年々減少しているが、現在でもCVケーブルによる事故は、年々増加しているのが現状であり、特にCVケーブル中間接続部、終端接続部での事故が多く報告されている。CVケーブルの接続部、終端部での事故例としては主に、接続部界面から発生する沿面放電による絶縁破壊事故が挙げられる。界面でのトラッキングは、ケーブル接続部での絶縁性能を低下させる現象の一つである。トラッキング劣化の初期段階は、部分放電による絶縁材料の抵抗が減少し、漏れ電流が流れ始める。その後、局部的な放電により材料表面が劣化し、炭化導電路が形成される。従って、トラッキングによる事故を減らすためには、初期の部分放電の検出が重要である。

ところで、圧電AE（Acoustic Emission）センサは絶縁物質内での部分放電によりもたらされる弾性波を容易に検出できる機器である。AEセンサのノイズレベルは比較的低く、低ノイズを処理後、FFT解析を介したデジタルフィルタの活用で、AE信号の取得に関するS/N比を容易に向上できる。本研究ではCVケーブルの接続材で発生する沿面放電を絶縁ゴム板上で模擬放電を起こして、実験を行った。放電による弾性波は、AEセンサで取得した。この測定をとおして、沿面放電によるトラッキング特性を検討した。

2.実験方法

2.1 適用平板電極

図1に実験回路、図2に電極形状（対向平板）を示す。本実験板状の絶縁板（200×50mm,t=0.5mm）及び銅テープ（t:0.1mm、幅:1cm、先端部:45°）を用いた。ここでは、絶縁ゴム板上に銅テープの対向平板電極が向き合うよう対向設置し、電極間で放電を発生させた。電極は絶縁ゴム板で挟み込み、さらに、その上下を絶縁ゴム（200×200,t=20mm）で挟み、上から約8.0kgの重量物で押さえつけた。課電用にはノコソロナ ACL波数耐圧試験電源（総研電気（株）製 DAC-WT-50）を使用した。実験条件として、COMSOLより算出した設定値（印加電圧:3kVrms、電極距離2.2mm）とした。なお、本実験では60Hzの約16.7倍である電源周波数1kHzを用いて、高周波劣化加速試験を行った。部分放電による弾性波の検出には、板極構型AEセンサ（AE-900S-WB、総研電気製）を使用し、放電源から約15mmの位置に配置した。取得されたAE信号は90dB（プリアンプ:40dB、ディスクリミネータ:50dB）増幅し、A/D変換器を介して、100MS/sのサンプリングでPCで取得した。また、取得の際にディスクリミネータにて、バンドパスフィルタ（BPF）処理（HPF:50kHz、LPF:500kHz）を施している。
してオシロスコープで取得した。

図 1. 実験装置の概要

図 2. 針対平板電極の概要

2.2 針対針電極

2.1 の実験から電極形状を針対針電極に変更して試験を行った。図 3 に電極形状(針対針)を示す。本実験では、絶縁ゴム板(200 mm×50 mm×t=0.5 mm)及び銅板(t=0.1 mm)、電極幅:10 mm、先端角度:45° を用いた。ここでは、絶縁ゴム板上に銅板を先端が向かい合うように対向配置し、電極間で放電を発生させた。実験条件として、COMSOL より算出した設定値(印加電圧:3.6 kVrms、電極間距離:3 mm)を参考とした。他の実験条件は 2.1 の実験と同様の為、省略する。

図 3. 針対針電極の概要

3. 実験結果及び検討

3.1 針対平板電極

図 4 に検出された AE 信号波形、図 5 に図 4 の AE 信号波形を 50kHz から 200kHz までのバンドパス処理した信号部(0.13ms~0.32ms)間の FFT 解析結果を示す。図 4 の横軸の 0.13ms は放電が発生した時点である。図 4 より 60kHz 付近で最も大きな周波数スペクトルが検出されている。これまでの研究から、絶縁体内部における部分放電は 60 〜 90kHz で周波数スペクトルが検出されることが分かっている(8)。このことから、ゴム板内部での部分放電を検出していることを確認した。

図 4 検出された AE 信号波形

図 5 図 4 の周波数スペクトル

本実験では、課電開始から 6.6 時間で絶縁破壊に至った。60 Hz 換算では、約 110 時間で絶縁破壊に至ると予想される。図 6 に最大 AE 信号強度の時間変化、図 7 に放電電荷量の時間変化を示す。放電電荷量は時間が経過するにつれて大きくなっていることが分かる。それに伴い、最大 AE 信号強度も大きくなっていることを確認した。
図6にAE信号の累積回数を示す。それぞれの信号の発生レートの変化を、第1段階(課電開始~1h)、第2段階(1h~5h)、第3段階(5h~破壊時)に分ける。信号の発生レートについて、第1段階は132 count/min、第2段階は30.5 count/min、第3段階は59.4 count/minとなっている。破壊前の第3段階は、第2段階の約2倍であったことが分かった。

図9にAE信号の累積回数を示す。それぞれの信号の発生レートの変化を、第1段階(課電開始~1h)、第2段階(1h~5h)、第3段階(5h~破壊時)に分ける。信号の発生レートについて、第1段階は132 count/min、第2段階は30.5 count/min、第3段階は59.4 count/minとなっている。破壊前の第3段階は、第2段階の約2倍であったことが分かった。

3.2 針対針電極

図10に検出されたAE信号波形、図11に図10のAE信号波形を50kHzから150kHzまでのバンドパス処理した信号部(0.1ms~0.3ms)間のFFT解析結果を示す。図2.3の横軸の0.12msは放電が発生した点を示す。図2.5より、フィルタ処理を行ったことで、信号強度は減少しているが、信号が顕著に見られる。また、図2.6より60kHz付近で最も大きな周波数スペクトルが検出された。このことから、針対針電極においても部分放電を検出出来ていることを確認した。
図10の周波数スペクトル。次に、図12に最大AE信号強度の時間変化を、図13に放電電荷量の時間変化を示す。周波数1 kHzで加速劣化させた結果、課電開始から約213分で絶縁破壊に至った。図4.18において、課電開始時は約5Vの信号を検出しているが、以降60分までは1.5 V程度の低強度の信号しか検出されていない。しかし、課電開始から約60分後にAE信号強度の増加が見られ、さらに破壊に近づくにつれ再び信号強度の増加を確認した。また、図13においても同様であり、課電開始時は10 pC～1000 pCまでの電荷量が検出されているが、以降60分までは100 pC未満の電荷量しか検出されていない。しかし、課電開始から約60分後に約800 pCの電荷量が検出され、以降で比較的大きな放電が発生しており、AE信号強度と同様にトラッキング破壊に至る直前の課電開始約180分後から破壊に近づくにつれ放電電荷量が増加している。

図12 最大AE信号強度の時間変化。

図13 放電電荷量の時間変化。

図14に30分当たりのAE信号の検出回数を、図15にAE信号の累積回数を示す。図14より、課電開始から60分までには、10分当たり約260個程度のAE信号を取得している。しかし、10分～60分と60分～90分間においてAE信号の検出回数に急激な変化が見られ、約15倍の変化が見られた。また、図4.21より、それぞれの信号の発生レートの変化を、初期段階（課電開始～60分）、最終段階（60分～破壊時）に分ける。信号の発生レートについて、初期段階は8.41 count/mm、最終段階は135.97 count/mm となっており、全体の信号発生レートは89.35 count/mm であった。

図2.9 AE信号の検出回数。

図2.11 AE信号の累積回数。
4. 結論

接続部材界面で発生するトラッキング現象に着目し、絶縁ゴム表面の2つの模擬放電(針対平板電極を用いたT分岐接続材及び針対針電極を用いたプラグインエルボ)によるAE信号及び放電電荷量の観測をとおしてトラッキング劣化過程を調べた。

針対平板電極の場合、約110時間で放電電荷量は時間が経過するにつれ、大きくなっていることが分かった。それにより、最大AE信号強度も大きくなっていることを確認した。また、AE信号の単位時間当たりの発生回数は絶縁破壊前に検出回数が増大し、絶縁破壊に至り、針対平板電極におけるトラッキング劣化においては、3段階の進展モードがあることが示唆された。

針対針電極の場合、課電開始から約60 min後に信号が増減を繰り返しながら次第に大きくなることが分かった。これに伴い電荷量の大きい放電が検出された。また、針対針電極におけるトラッキング劣化においては、2段階の進展モードがあることが示唆された。

参考文献

4) 大津: アコースティック・エミッションの特性と理論 第2版, 森北出版, 2005.
5) 特別高圧CVケーブル絶縁劣化形態と絶縁診断技術の動向, 電気学会技法部, No.266, 1998.
6) 高電圧試験ハンドブック, オーム社, 1983.
7) 杉浦匡紀, 中村祐太, 田村彰教, 三宅琢磨, 追田達也, 島川陽一, 川越英文, 西昌美, 中川智之, 阿部進一郎: "EPゴムシートを用いた周波数加速劣化試験で得られるAE信号の特性", 電気関係学会九州支部連合大会, 2012年9月
直列ギャップ付 ZnO 避雷器の V-t 特性の改善に関する研究
堀江 響 a) ・迫田 達也 b) ・久保 克隆 c) ・水谷 学 d) ・深野 孝人 e)

Study on Improvement of V-t Characteristic of ZnO Surge Arrester with a Series Gap
Hibiki HORIE, Tatsuya SAKODA, Katsutaka KUBO, Manabu MIZUTANI, Takato FUKANO

Abstract
Surge arrester with a spark gap has been installed for reducing the electrical failures in Japanese distribution systems. The top and the bottom of a ceramic spacer for sustaining an electrode gap in a surge arrester contact with electrodes, in which there are triple junction points formed among the ceramic spacer, the gap electrodes, and the atmosphere. Electric field at the triple-junction point becomes large; therefore, the triple junction point may influence the discharge characteristics.

We prepared some electrodes with a small step edge on an inclined plane of each electrodes, which played a role like a triple junction point. We investigated how the shape of the electrodes influences on discharge characteristics such as discharge ignition. The results showed that formation of a step edge on an inclined plane of each electrode contribute on lowering a discharge voltage and shortening a discharge time lag.

Keywords: V-t characteristics, Spacer, Surge arrester, Series gap

はじめに
高度情報化社会の発展に伴い、電力の安定供給が強く求められている。しかし、配電系統において、自然災害による事故停電を完全に避けることは困難である。その中でも、落雷による停電は、依然として事故件数に占める割合が高い。そのため、配電系統においては、電力機器を保護するための配電用ギャップ付避雷器が数多く設置されている。これらの電力機器は、動作目的に合わせて、放電を精度良く制御できることは望ましい。しかしながら、大気圧中の放電は電極形状、印加電圧、電界といった諸要因により影響を受ける。ギャップ付避雷器においては、放電ギャップを形成するために、ギャップを保持するためのスペーサ(絶縁管)が利用されている。このスペーサにより、大気、スペーサ、ギャップ電極が接する箇所においては局所的に電界が高くなる三重点が形成される。このような高電界部は部分放電の発生箇所となり、放電特性にどのような影響を与えるか詳細に把握しておくことが望ましい。著者らは、ギャップ電極とスペーサから成る放電ギャップにおいて形成される高電界部がギャップ間の雷インパルス放電特性に与える影響および放電特性の改善に関しての検討を行っている。

1. はじめに

本論文では、ギャップ電極の形状の変更によって、初期電子生成に影響を与えるであろう電界強度や初期電子生成部から電極頂点まですべての距離の短縮化が、雷インパルス放電の V-t 特性に与える影響を評価する結果について述べる。

2. 実験方法と電界解析
2.1 作製した電極の形状および電界計算条件
図1に示すような4種類の放電電極を作製し、実機と同様に、スペーサを用いて同じ形状の電極を対向配置して8mmの放電ギャップを形成した。また、全ての電極の頂上部にはアーケ圧力を解放できるような孔を設けた。電極A及びBの孔径は、電極の斜面に設けた電極の高さを電極頂点までの距離を短くするために既製品(3mm)よりも大きな7mmにした。更に、電極Bについては、電極斜面に、電界が高くなり、初期電子の生成率に影響を与えると考えられる図1(b)に示す高さ4.5mmのエッジを設けた。電極Cの孔径は電極に広げて8mmとし、電極斜面のエッジは電極Bと同様とした。電極Dの孔径は9mmに広げ、孔径でのエッジは電極Bと同様とした。なお、ギャップ電極頂点の曲率半径は全ての電極で2.5mmとした。

図2に、解析モデルの一例として、ギャップ電極Aと
ギャップ長を保持する円筒型スペーサから構成されるギャップ電極を示す。円筒型スペーサは内径が20mm、高さ25.5mmとなっており、ギャップ電極のギャップ長は8mmとなっている。ギャップ電極と円筒型スペーサにはそれぞれ、銅、セラミックスの導電率を与え、上部電極に30 kVの電位を与えた時の条件で電界強度分布を計算した。

図1. 作製した電極

図2. 2次元解析モデルの例

2.2 電界解析結果

図3から図6に電極A-Dの電界解析結果を示す。これらの図において白い部分は電界強度が5 kV/mmを超えた箇所を示す。

初期電子生成部から電極頂点部までの最短距離と、最大電界強度を表1に示す。電極斜面にエッジが無い電極Aの三重点近傍の電界強度が2.4 kV/mmであるのに対し、エッジ有りの電極Bではエッジ部の電界強度が16.5 kV/mmと著しく高くなり、電極頂点部よりも高い電界領域が形成される。また、電極C、電極Dでも同じ傾向がある。このことからエッジを設けることによって電界強度が高くなり、放電が起こるため的初期電子の供給量が多くなるため放電特性が安定すると考えられる。更に、エッジを設けて孔径を広げることにより、エッジ部から頂点までの距離を短くした電極B、電極C、電極Dにおいて、エッジ部から頂点までの距離が短いほど、生成された初期電子が放電部までに到達する時間が短くなり、電子雪崩を形成する火花統計遅れが短くなると考えられる。

以上の電界計算によって得られた効果をV-t特性試験で明らかにすることとした。つまり、電極Aと電極Bの結果を比較することで三重点もしくはエッジ部の電界強度が与える影響を明らかにでき、電極Bと電極Cと電極Dを比較することで初期電子生成部から頂点までの距離が放電特性に与える影響を明らかにすることが出来る。

図3. 電極Aを用いた場合の電界強度分布

図4. 電極Bを用いた場合の電界強度分布
3. 放電ギャップの放電特性試験結果

図8から図11に、電極Aから電極Dで得られたV-t特性を示す。表2に、火花放電開始電圧、火花放電電圧の範囲、火花放電時間、標準偏差を示す。図8及び表2より、電極Aにおいては火花放電時間(放電遅れ)が顕著であり、放電時間の標準偏差が大きくなっていることが分かる。電極Bでは、電極Aの結果と比較すると、火花放電電圧の範囲は比較的狭く、放電に至る時間も短いため、標準偏差も小さい。以上のことから、電極斜面にエッジを設けることで放電特性が改善されることが分かる。また、電極C、電極Dにおいても、より放電特性が改善しており、特に電極Dでは火花放電電圧が低く、放電に至る時間も短くなり、放電特性が大きく改善している。以上のように、ギャップ電極の孔径を広げ、初期電子生成部(エッジ部)から電極頂点までの距離を短くすることによって、放電特性を安定させることができる。

2.3 雷インパルス放電試験条件

AからDの4種類のギャップ電極とスペーサを用いて構成した放電ギャップを碍管容器無しの避雷器内部要素を湿度制御が可能な容器内に配置し、湿度が放電特性に与える影響を小さくするために、容器内の絶対湿度を約5[g/m³]に調整した。雷インパルス電圧は、図7に示す1.2/50 µsの標準雷インパルス電圧発生回路において、充電電圧を25 kVから最大40 kVの範囲で出力することとした。3分間隔で1 kVずつ昇圧して印加した。放電電圧(t)と放電時間(t)はディジタルオシロスコープで記録した。

<table>
<thead>
<tr>
<th>Type</th>
<th>Shortest distance (mm)</th>
<th>Maximum E. (kV/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.06</td>
<td>2.46</td>
</tr>
<tr>
<td>B</td>
<td>4.03</td>
<td>16.5</td>
</tr>
<tr>
<td>C</td>
<td>3.51</td>
<td>15.6</td>
</tr>
<tr>
<td>D</td>
<td>3.05</td>
<td>12.2</td>
</tr>
</tbody>
</table>

表2. 電極A-DにおけるV-t特性

<table>
<thead>
<tr>
<th>Type</th>
<th>Ignition voltage of sparkover (kV)</th>
<th>Range of sparkover voltage (kV)</th>
<th>Range of time to sparkover (µs)</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>25~35</td>
<td>1.0~10</td>
<td>1.37</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>25~30</td>
<td>0.7~2.2</td>
<td>0.34</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>25~30</td>
<td>0.6~1.8</td>
<td>0.40</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>20~25</td>
<td>0.4~1.2</td>
<td>0.21</td>
</tr>
</tbody>
</table>
4. 結論

電極の形状が放電遅れにどのような影響を与えるか明らかにするために、形状の異なる電極を用いて、放電特性試験及び電極周辺の電界計算を行った。その結果、電極の斜面にエッジを設けることによりエッジ部の電界強度は、スペース、大気、電極の間に形成される三重点近傍の電界強度より高くなることを示した。また、放電特性は電極頂点の曲部とエッジとの距離を短くすることで安定することが明らかとなった。

参考文献

Withstand Voltage Characteristics of Polymeric Material with AC Voltage Application

Tatsuya DEGUCHI, Tatsuya SAKODA, Yoshiaki AKA, Tomikazu ANJIKI, Takato FUKANO

Abstract

To widely promote the application of polymer housed electric power equipment from the distribution class to the high voltage class in Japan, details of deterioration owing to pollution deposits and the long-term reliability should be investigated. In this study, to grasp influence of pollution deposits and difference of AC voltage application on insulation performance, AC flashover test and observations of corona or dry-band arc discharge and flashover channel were carried out against silicone rubber samples polluted by red clay or carbon. The results showed that pollution deposits influenced on discharge processes and formation of flashover channel. Such characteristics also influenced on flashover voltage, and the difference of flashover voltage for unpolluted and polluted SiR samples.

Keywords: polymer, silicone rubber, discharge
汚損試料は約30分行い、水分が同量付着するようにした。
湿潤後、昇圧レート0.5 kV/sで昇圧し、FOに至った時の電圧を記録し、FOに至る過程を高速度カメラを用いて撮影した。試験は一条件に付き5回行った。FO電圧の確認はデジタル・オシロスコープを用いて行い、FOは、5 mA以上の電流パルスが確認されるとともに電圧が0 V近傍まで低下した時と定義した。ところでは、試料表面における汚損物質の汚損量の指標には、不溶性物質付着密度(non-soluble deposit density: NSDD)を用いた。

<table>
<thead>
<tr>
<th>表1 試験条件</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied voltage</td>
<td>AC (60Hz)</td>
</tr>
<tr>
<td>Sample</td>
<td>Unpolluted</td>
</tr>
<tr>
<td></td>
<td>Carbon</td>
</tr>
<tr>
<td></td>
<td>Red clay</td>
</tr>
<tr>
<td>Gap length [mm]</td>
<td>10, 30, 50</td>
</tr>
<tr>
<td>Arranged angle [°]</td>
<td>0</td>
</tr>
<tr>
<td>Test liquid</td>
<td>Deionizer water</td>
</tr>
<tr>
<td>Chamber size [m×m×m]</td>
<td>1.2×1.2×1.2</td>
</tr>
<tr>
<td>Spray quantity [l/h]</td>
<td>1.2</td>
</tr>
<tr>
<td>Voltage increase rate [kV/sec]</td>
<td>0.5</td>
</tr>
<tr>
<td>Series resistor [MΩ]</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2 実験試料
図3に各試料の表面をデジタル顕微鏡を用いて拡大し撮影した様子を示す。さらに、図4に表面を湿潤後に図3と同様に撮影した様子を示す。図4より、汚損なしの場合では小さな半球形の水滴が無数に付着しており、良好な撥水性を有している。STRI(Swedish Transmission Research Institute)法を用いるとHC1である。カーボン汚損時では、半球形を留めていない小さな水滴が付着しており、STRI法を用いるとHC2程度である。との粉汚損時では、との粉の吸水性により、試料全体が水膜で覆われた状態である。STRI法を用いるとHC6～HC7程度である。

図1. 実験装置の概要.
図2. 電極の配置.
図3. 各試料の表面を拡大した様子.
図4. 湿潤時に各試料の表面を拡大した様子.

以下において各汚損試料の作成方法を示す。カーボン汚損試料の作成方法は、まず、汚損前の試料両端にテープでマスキングを行い、汚損させる領域を形成する。その後、エアコンプレッサを用いて風圧をかけて吹きつけを行うことで、カーボン汚損試料を作製した。なお、NSDDに従い汚損度が1.01 mg/cm²となるように汚損を施した。との粉汚損試料の作成方法は、まず、汚損前の試料両端にテープを貼りつけ、汚損領域の周りに仕切りを作り、イオン交換水にとの粉を混ぜた混濁液を作製した容器内に流し込む。その後、3～7日程度放置し、自然乾燥させてことでとの粉汚損試料を作製した。
汚損試料は約30回い、水分が同量付着するようにした。湿潤後、昇圧レート0.5 kV/sで昇圧し、FOに至った時の電圧を記録し、FOに至る過程を高速度カメラを用いて撮影した。試験は一条件に付き5回行った。FO電圧の確認はデジタル・オシロスコープを用いて行い、FOは、5 mA以上の電流パルスが確認されるとともに電圧が0 V近傍まで低下した時と定義した。ところで、試料表面における汚損物質の汚損量の指標には、不溶性物質付着密度（non-soluble deposit density: NSDD）を用いた。表1に試験条件を示す。| | | | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Unpolluted</td>
<td>Carbon</td>
<td>Red clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap length [mm]</td>
<td>10, 30, 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arranged angle [°]</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test liquid</td>
<td>Deionizer water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber size [m × m × m]</td>
<td>1.2 × 1.2 × 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray quantity [ℓ/h]</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage increase rate [kV/sec]</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series resistor [MΩ]</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図1. 実験装置の概要。
図2. 試験試料と電極の配置。
図3に各試料の表面をデジタル顕微鏡を用いて拡大し撮影した様子を示す。さらに、図4に表面を湿潤後に図3と同様に撮影した様子を示す。図4より、汚損なしの場合では小さな半球形の水滴が無数に付着しており、良好な撥水性を有している。

図5に各試料の乾燥状態における電極間距離ごとのFO電圧を示す。同図より、電極間距離が長くなるにつれてFO電圧が高くなっていることが分かる。これは、電極間距離が長くなるにつれて試料の表面抵抗が高くなるためである。また、各電極間距離でカーボン汚損試料のFO電圧は汚損なし試料に対して低下が見られるが、との粉汚損試料ではFO電圧は低下せず、汚損なし試料と同程度であった。以上より、試料表面が乾燥状態ではカーボンはSiRの耐電圧特性に影響を与えるものの、との粉はほとんど影響を与えないことが分かった。

図6に各試料の乾燥状態におけるFOの様子を示す。乾燥状態では表面の状態に関わらず、昇圧すると同図のよう突如的にFOが発生した。

図7にFO後の汚損なし試料とカーボン汚損試料に霧吹きを用いてイオン交換水を吹きかけ撥水性を確認した結果を示す。図同より、汚損なし試料ではFOが発生した部分の撥水性がHC2-3程度まで低下し、カーボン汚損試料ではHC4-5程度まで低下した。

図8に各試料の乾燥状態における電極間距離ごとのFO電圧を示す。同図より、各電極間距離で汚損なし試料のFO電圧に対して汚損試料のFO電圧の低下が見られる。そして、その低下度合いはカーボン汚损試料と、との粉汚損試料で同程度ということが分かった。

図9に汚損なし試料がFOに至る過程を示す。ただし、電極間距離によるFOに至る過程に違いが見られなかったため、ここでは電極間距離30mm試料におけるFOに至る過程を示している。同図(a)より、電圧印加前は小さな無数の水滴が付着しており、撥水性はSTRI法でHC1である。そこから昇圧していくと、同図(b)に示すように水滴が大きくなり、また、撥水性がHC2程度に低下する。これは、交流課電では電圧の極性が常に変化しているため、水滴が振動を行い近傍の水滴と接触し一体化することが原因である。撥水性の低下は、水滴間でコロナ放電が発生することが原因だと考えられる。さらに昇圧を行うと、FO電圧の80%程度で、同図(c)に示すように水滴が電極間に橋絡することで水路を形成し、さらにその水路の水分が沸騰し
蒸発する。さらに昇圧すると、同図(d)に示すようにFOに至る。FOは同図(c)において撥水性が低下していた経路で発生する。FO後は放電の経路上の水分は蒸発していた。試験後、霧吹きでイオン交換水を吹きかけ撥水性を調べると、同図(e)に示すように放電の経路となった部分の撥水性がHC6-7程度まで低下していた。

図10 カーボン汚損試料がFOに至る過程

図11 に汚損なし試料がFOに至る過程を示す。ただし、電極間距離によるFOに至る過程に違いが見られなかったため、ここでは電極間距離30mm試料におけるFOに至る過程を示している。同図(a)より、電圧印加前はカーボン粉により半球形から崩れた無数の水滴が付着しており、撥水性はSTRI法でHC2程度である。そこから昇圧していくと、同図(b)に示すように電極と試料の間で部分的な放電が発生し、その箇所が乾燥することでドライバンドが形成される。また、同時に汚損なし試料で見られた電極間の水路の形成・沸騰が見られた。さらに昇圧していくと、同図(c)に示すように、電極間をFOが発生する。FO後は、同図(d)に示すように、部分放電が発生した経路の跡が確認できる。試験後、霧吹きでイオン交換水を吹きかけ撥水性を調べると、同図(e)に示すように部分放電と水路の形成・沸騰が発生した経路の跡の撥水性がHC7程度まで低下していた。
3.3 乾燥状態と湿潤状態の比較

図5、図8より、汚損の有無を問わず試料表面が湿潤することによりFO電圧が低下することが分かった。これは、試料表面に付着した水分により表面抵抗が低下するためである。また、電極間距離50mmの各試料の乾燥状態と湿潤状態のFO電圧は、汚損なし試料で33.7 kVと23.4 kV、カーボン汚損試料で30.0 kVと19.1 kV、との粉汚損試料は33.8 kVと19.2 kVであり、FO電圧の低下度合いは、との粉汚損試料が最大であることが分かった。これは、との粉の吸水性によるものと考えられる。

FOに至る過程は、乾燥状態では表面の状態に関わらず昇圧していくと突発的にFOが発生したが、湿潤状態においては、汚損なし試料では水滴が交流課電の影響を受け、FO以前にFOが発生する経路で電極間に橋絡して沸騰する過程が見られた。汚損試料では、昇圧中に電極と試料間で部分放電が発生しドライバンドを形成する過程が見られた。

4. まとめ

人工的に汚損させたSiR試料を用いて交流課電FO試験を行い、汚損物質がSiRの耐電圧特性に与える影響を評価し、FOに至るまでの過程を比較・検討した。その結果、汚損状態や表面の湿潤がFO電圧やFOに至る過程に与える影響が明らかになった。汚損を施していない状態では、表面の水滴が課電による影響を強く受け、水滴間のコロナ放電による撥水性の低下や、水路の橋絡からトラッキングの形成などの過程を経てFOに至ることが分かった。汚損状態では、昇圧中に電極と汚損物質間で放電が発生し、ドライバンドの形成を経てFOに至ることが分かった。また、カーボンやとの粉の性質の違いが、乾燥状態と湿潤状態においてFO電圧やFOに至る過程に与える影響が異なることが明らかになった。

参考文献

Characterization of a Under Water Plasma with Surfactant

Goto HIROKI, Taiga DOZONO, Tatsuya SAKODA,

Abstract

Advanced oxidation process (AOP) with hydroxyl radicals (OH) is considered to be useful for water purification through oxidation; therefore, we proposed an underwater plasma source with a porous glass membrane which functioned in bubble supply and the formation of micro-discharges. We here added surfactant to water and evaluated whether the underwater plasma could increase the amount of radicals such as OH and O. The results showed that the discharge characteristics was significantly improved by the addition of surfactant.

Keywords: Ozone, OH radical, Plasma, Surfactant

1. はじめに

宮崎県は、国が掲げる地方の成長する力を取り戻す「地方創成」を実現するべく、本県の農業の競争力強化や、農業を主とするフードビジネスの振興により、地域活性化を図っている。中でも、生産から販売までを一貫した総合展開による輸出促進や、カット野菜やカットフルーツといった加工食品などの高付加価値化への取り組みが行われている。本県は、農業産出額全国5位、食料自給率生産額ベース全国1位と、我が国の食料自給地としての役割が大きい。しかし、本県は、大量消費地から遠隔地にあるため、鮮度保持や物流において不利な条件にある。国内では、本県を代表する農産物であるマンゴーにおいては、出荷後に発生する炭疽病や軸腐れ病などの病害発生がクレームの原因となり、市場、小売、消費者の信頼を損ねるとともに、商品価値も著しく落ち込み、着荷時のかびや腐敗発生による損失が大きく、農家所得の向上に繋がりが少ないのが現状である。しかしながらポストハーベスト農薬は、収穫後に散布されることが有効だとされている。しかしながらポストハーベスト農薬は、収穫後に散布されることから日本においては、発がん性や催奇形性など人体に影響を与えることが懸念されているため、使用が禁止されている。生産者は、有効で安全な殺菌技術の開発が求められている。その中で、塩素処理が主流で、塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかし、自然界に塩素の浄化システムが形成されていないのが現状である。塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかし、自然界に塩素の浄化システムが形成されていないのが現状である。塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかしながらポストハーベスト農薬は、収穫後に散布されることから日本においては、発がん性や催奇形性など人体に影響を与えることが懸念されているため、使用が禁止されている。生産者は、有効で安全な殺菌技術の開発が求められている。その中で、塩素処理が主流で、塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかし、自然界に塩素の浄化システムが形成されていないのが現状である。塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかし、自然界に塩素の浄化システムが形成されていないのが現状である。塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。しかし、自然界に塩素の浄化システムが形成されていないのが現状である。塩素処理が主流になった理由として、酸化・殺菌・脱色能力を持っていることから色素や細菌を分解させることができること、安価であることが挙げられる。
示している(3)。また、処理溶液に界面活性剤を添加することで、界面活性剤の持つ作用により処理能力が変化すると予想される。界面活性剤は表面自由エネルギーを低下させることから気泡同士の結合を抑制し、気泡の安定剤として機能することが知られている(4)。水中プラズマ装置は、処理溶液の多孔質膜近傍が OH ラジカルの生成箇所であり反応域となるため、界面活性剤が気泡の安定剤として機能することにより、OH ラジカルの生成量増加を促すことが考えられる。

本報では、処理溶液に界面活性剤が混入した場合の水中プラズマ源の基礎特性として、オゾン濃度とガス圧力の依存性及び放電電力の推移を検討した結果について述べる。

2. 実験
2.1. 水中プラズマ源
2.1.1. 実験装置
図1に水中プラズマ源の装置構成を示す。実験装置は、反応容器、放電電流測定用コンデンサ、制限抵抗、高周波高電圧電源から構成される。高周波高電圧電源(ハイデン研究所、PHF-2K型)は、半値全幅3.2μsの正負パルス群を繰り返し周波数6kHzで出力可能である。反応容器は多孔質ガラス膜（アルミナ質多孔体）と針状高電極で構成されている。多孔質ガラス膜と針状高電極側電極は密着配設し、針状高電極側からO₂を供給して液相側に気泡を供給する。次に、高電圧電極に電圧を印加することで細孔内及び液相側の多孔質ガラス膜表面に生じる気泡の気液界面放電を生成してO₃やOH ラジカル等の殺菌剤を生成する。なお、高電圧電極を針状としたのは、電界集中を容易にするため、細孔が電極により塞がれることなく多孔質ガラス膜との密着配設を可能にするためである。印加電圧は2000Vの高電圧プローブ（日新パルス電子、EP-50k）で、放電電流はCT センサ（林栄精機、CT-C2.5-B）を用いて測定し、デジタルオシロスコープ（Tektronix，DPO-4034）を介してデータを取得した。また、液相側から排出される排O₃は、紫外線吸光式のO₃モニター（EBARA，EG-2001B）を用いて測定した。

2.1.2. 多孔質ガラス膜
本研究で誘電体として使用したアルミナ多孔体の特徴を以下に示す。
・圧壊強度に優れている
・大きな細孔容積率を有する
・形状の自由な変更が可能である
・アルミナで構成されているため、誘電体としての性能に優れている。
図2に走査型電子顕微鏡によって得られた多孔質ガラス膜の外観とSEM 画像。図3に本報告で使用した多孔質ガラス膜の細孔容積分布を示す。

図1に水中プラズマ装置構成
図2 多孔質ガラス膜の走査型電子顕微鏡画像
図3 多孔質ガラス膜の細孔径分布

図2より、6.4μmにピークが存在しており、細孔がほぼ均等に存在していることが確認できる。細孔を介して気相から液相にガスを流し込む場合、ある一定の圧力を超えた際に気泡が生成される。この圧力はパブルポイント圧Pₚと定義され、次式で表現される(5)。

\[P_p = \frac{4 \gamma \cos \theta}{D_m} \] (6)

ここで、\(\gamma \) [N/m] は液相の表面張力、\(\theta \) [rad] は多孔質ガラス膜の接触角を示す。
2.2. 屏面活性剤

ここでは、界面活性剤の特徴について述べる。界面活性剤は一般的に洗剤用として認知・使用されている物質であり、2つの相反する性質の部分からなっていて、その両方の性質をもつため、両者をつなぎとめる役割を果たしている。このとき界面活性剤分子を用いると、水と油の界面に集まりその性質を変えることができる。次に、界面活性剤が表面張力を低下させる作用について説明する。界面活性剤は、水と油の界面に集まりその性質を変えたと言える。次に、界面活性剤が表面張力を低下させる作用について説明する。表面張力はdyne/cm = N/mの単位で表される。
3.2. 放電電力の推移

図6に放電電力測定の実験結果を示す。印加電圧が低い4 kV\textsubscript{pp}時のみ界面活性剤の添加の有無によらずほぼ同じ放電電力となったことから、本装置において4 kV\textsubscript{pp}ではほとんど気泡内放電が生起されていないことが確認できる。一方、5 kV\textsubscript{pp}以上の電圧では、界面活性剤添加時のほうが放電電力が大きくなることが分かった。界面活性剤無添加時の7 kV\textsubscript{pp}と界面活性剤添加時の6 kV\textsubscript{pp}は、ともに約4 W程度となり、界面活性剤添加時の7 kV\textsubscript{pp}においては2倍の約8 Wと放電電力を大幅に大きくした。この結果から、界面活性剤を用いた水中プラズマ装置は放電電力も大きくなり、同電圧で比較しても電子の持つエネルギーが増加し高いオゾン濃度を生成することが可能だったと分かった。

4. 結論

多孔質膜を利用した水中プラズマ源に界面活性剤を用いた時のオゾン濃度と圧力依存性および放電電力の推移を検討した。オゾン濃度と圧力依存性の検討から、液相の表面張力が低下することにより生成されたオゾンは処理容器内に流入しやすくなり、また、OHラジカルの生成に必要な液相と電子の衝突が増加していることが示唆された。放電電力の推移の検討から、界面活性剤添加時の放電電力が無添加時より大きく上回る結果が得られたことからも、液相と電子の衝突が増加していることが確認できた。

上記の知見を基に、被処理水に界面活性剤と細菌類が含まれる条件下において、生成される高濃度オゾンやOHラジカルを用いた細菌類の不活化を試みる必要がある。

参考文献

1) Steve Hoffmann・株式会社オーム社：「水ビジネスの世界」，pp106-112(2011)
3) 塩満 政一，迫田 達也：「多孔質ガラス膜を用いた水中放電プラズマ発生装置の特性」，電気学会，Vol.134，No.5，pp.321-326 (2013)
4) 藤本武彦：「新・界面活性剤入門」，三洋化成工業株式会社，pp.1-24(1992)
5) 久木崎雅人・鳥越 清・藤本幹治・大島達也：「SPG膜を用いた無気泡ガス溶解法によるオゾン水生成技術の開発」，宮崎県工業技術センター・宮崎県食品開発センター研究報告，No.51，pp.20 (2006)
多孔質膜利用の水中プラズマ源による芽胞菌の不活化過程の検討

堂園 大雅 a)・後藤 弘輝 a)・迫田 達也 b)

Study on Inactivation Process of Bacillus subtilis by an Underwater Plasma Source with a Porous Membrane

Taiga DOZONO, Hiroki GOTO, Tatsuya Sakoda

Abstract

Plasma formation in water is considered to be useful for sterilization because hydroxyl radicals are directly produced; therefore, we proposed an underwater plasma source with a porous membrane which functioned in bubble supply and the formation of gas-liquid interface discharges. In this study, we examined inactivation of Bacillus subtilis and evaluated the inactivation efficiency in plural reaction areas. The results showed that radicals produced at the gas-liquid interface on a porous membrane made a substantial contribution on decomposition for organic matter such as a methylene blue. However, O₃ rising bubbles from a porous membrane were responsible for inactivating Bacillus subtilis having resistance period.

Keywords : underwater plasma, OH radical, O radical, inactivation

1. はじめに

近年,水処理の分野において,

O₃ (酸化電位 2.07 V) よりも高い酸化電位を持つ OH ラジカル (以下: OH ラジカル) が注目されている。OH は、フッ素 (酸化電位 2.89 V) に次ぐ高い酸化電位を有しており, O₃ では分解できないフミンや酢酸などの難分解性有機物の分解も可能と報告されている。特に、最近、エネルギー効率の観点から放電を用いた方法が盛んに研究されている。しかし、促進酸化処理法の有用性を示すデータには難分解性有機物を被処理対象としたものが多く、排水に含まれる細菌菌に作用する研究は多くない。

著者等は、多孔質膜を誘電体＋気泡生成素子として用いた水中プラズマ装置を提案し、液中気泡内で放電を生起し、生成された活性種によって酵素の効率的な促進処理が可能であることを示している。加えて、Ar ガスで水中プラズマを生成し、細菌類である芽胞菌の不活化試験を行うことで、Ar ガスを用いた場合には気液界面で生成された OH が主な不活化機能をもつことを明らかにしている。本研究提案の手法では、水中にパルスパワーやの特殊電源を用いて高電界の形成によるアーク放電で細菌類を不活化する手法と異なり、水中で誘電体バリア放電を形成して不活化を試みている。さらに、O₃ を含む気相空間が水中を上昇することにより、処理溶液との接触面積を大きくできる条件下での不活化処理となる。前述のように、短寿命ラジカルを活用した促進酸化処理が注目されているが、本研究提案のプラズマ源の場合は処理溶液の多孔質膜近傍が短寿命ラジカルの生成箇所であり反応域となる。しかし、短寿命ラジカルの反応域は、半減期の短さゆえに局所的であり、大部分の不活化は上昇気泡中の O₃ が接する過程において行われている可能性がある。以上のように、本研究提案の水中プラズマ装置における不活化過程は、1 つの処理容器内において複数の反応域で行われているため、気液界面近傍の短寿命ラジカルの不活化効率だけでなく、上昇気泡中の O₃ による不活化効率を評価する必要がある。

加えて、我々は、これまでに菌の不活化過程には耐性期なるものが存在し、ある一定の期間、殺菌剤が菌に接触し続けないと不活化が進行しないことを明らかにしている。耐性期では、殺菌剤が分生胞子の持つ細胞壁や細胞膜のジスルフィド結合、SH 基、トリプトファン残基等の易反応結合部を損傷する期間である。これらが破壊された後は、殺菌剤が細胞内部に侵入し、核酸との反応を進むことで生存する菌数は指数関数的に減少する。前述のように、本研究提案のプラズマ源は、短寿命ラジカルの供給源として上昇気泡中の O₃ が存在する反応域がある。耐性期を有するような菌の不活化を行う場合、どの反応域が大きく貢献するか明らかにする必要がある。

本研究では、まず、原料ガスを O₃ とした水中プラズマ源によりメチレンブルー溶液の分解試験を行い、気液界面の
放電により生成される短寿命ラジカルと、O₃ を含む上昇気泡による分解効率を比較した。次に、原料ガスを O₂ とした場合の菌の不活化試験を行い、Ar を原料ガスとした場合の結果を参照しながら、気液界面近傍で生成される短寿命ラジカルによる不活化効率と、O₂ を含む上昇気泡による不活化効率を評価した。これらの結果を基に、液中に存在する菌に対しての水中プラズマ源の処理方法の最適化に関する指針を検討した。

2. 実験装置と実験方法

〈2-1〉実験装置の構成 Fig.1 に実験装置の構成を示す。実験装置は、反応容器、放電電力測定用コンデンサ、制限抵抗、高周波高電圧電源から構成される。高周波高電圧電源（ハイデン研究所、PHF-2K 型）は、半値全幅 3.2 μs の正負パルス群を繰り返し周波数 6 kHz で出力可能である。印加電圧は 2000V の高電圧プローブ（日新パルス電子、EP-50k）で、放電電流は CT センサ（Bergoz Instrumentation、CT-C25-B）を用いて測定し、デジタルオシロスコープ（Tektronix、DPO-4034）を介してデータを取得した。液相側から排出される放電は、紫外線吸光式のオゾンモニター（EBARA、EG-2001）を用いて測定した。放電スペクトルの観測は、ファイバ分光器（Ocean Optics、USB4000）と集光レンズ（焦点距離 100 mm）を用いて行い、放電部から集光レンズまでの距離を 600 mm、集光レンズからファイバ分光器までの距離を 120 mm の位置に固定し、積算時間を 10 s とした。放電生成部は多孔質ガラス膜（アルミナ質多孔体、20×20 mm、厚み 1 mm、平均細孔径 6.4 μm）と直径 1 mm の SUS 製針電極を 15 本束ねたものを高圧電極として密着配置して構成した。放電生成用ガスは高圧電極側から供給し、液相側で気泡を生成した。なお、高圧電極を針状とすることで、電極/多孔質膜接触点近傍の電界集中による活性種の生成効率向上に加え、電極/多孔質膜の良好な密着性を保ちつつ気泡の生成を行えるようにしている。なお、本装置では誘電体バリア放電を利用するため、液相及びリアクタの冷却装置は不要である。

本研究提案の水中プラズマ装置によって起こり得る連鎖反応式を以下に示す。(1)。このように、O₂ ガスを用いた反応は非常に複雑な反応を経て O₂ と H₂O₂ を生成する。また、後述するが、本研究で用いた OH のスカベンジャーとして知られるマンニトールの反応速度定数は 10⁻⁷～10⁻⁸ M⁻¹ s⁻¹ と高い反応性を示す。(5)。なお、O₂/H₂O₂ 反応による OH の生成が考えられるが、水中プラズマによって生成される OH との差別化を図ることは困難であるため今回は考慮しない。

Chain initiation reaction
\[O_3 + OH \rightarrow O^2+ + HO_2 \] (1)

Chain transfer reaction
\[O_3 + O^2- \rightarrow O_5+ + O_2 \] (3)
\[O^+ + O^+ \rightarrow O_2 \] (4)
\[H + O_3 \rightarrow O^+ + O_2 \] (5)
\[H + OH \rightarrow O + H_2O \] (6)
\[OH + O_3 \rightarrow O_3OH \] (7)
\[O_3OH \rightarrow O_3 + OH \] (8)

Chai termination reaction
\[O_3 + OH + H_2O \rightarrow O_3 + H_2O \] (9)
\[OH + OH \rightarrow H_2O_2 \] (10)
\[H_2O_2 \rightarrow HO_2 + H^+ \] (11)
\[OH + O^2- \rightarrow OH_2^- + O_2 \] (12)
\[H + O_3 \rightarrow O_3 + O_2 \] (13)
\[H + O_3 \rightarrow O_3 + O_2 \] (14)
\[O_3 + O^2- \rightarrow O_3 + O_2 \] (15)
\[O_3OH + OH \rightarrow H_2O_2 + O_2 \] (16)
\[O_3OH + O_3 \rightarrow H_2O_2 + O_2 + O_3 \] (17)
\[O_3OH + OH \rightarrow H_2O_2 + O_2 \] (18)
\[O_3OH + O^2- \rightarrow O_3 + O_2 + O_2 \] (19)

Other reactions
\[O_3 + O_2 \rightarrow O^2+ + O_2 \] (20)

〈2-2〉実験方法 放電生成用のガスは O₂。供給圧力は 140 kPa とし、針電極に \(V_{pp} = 9.0 \) kV を印加した。Fig.2 に、水中気泡内放電を示す。多孔質膜の細孔を起点として気液界面まで放電を確認できる。この時の放電電流・放電電圧波形を Fig.3 に示す。観測される電流は変位電流成分に、誘電体バリア放電特有のパルス状電流成分が重複したものになるが、ここではビースフィルタにより変位電流成分を除外している。同図より、第 3 波以降は放電プラズマの生成に寄与していないことが分かる。

有機物の分解試験において、被処理物に有機染料であるメチレンブルー（C₁₅H₁₄N₂SC₁₂）を用いた。メチレンブルーは、比色分析が可能であり非常に安定した物質であることから、放電による分解の対象として多く利用されている。このときは、導電率 100 μS/cm の滅菌水 500 ml にメチレンブルー
2.5 mg/L 供試したもののとした。処理時間は 20 min とし、1 min 毎に処理溶液を透過する定点レーザの透過光強度を測定した。その上で、未処理時の透過光強度を 1 として時間経過に伴う透過光強度の変化を得た。気液界面放電で好寿命ラジカルを発生しない場合、すなわち、別の外部オゾナイザで生成した Oz を水中に供給した場合との分解特性を比較するため、放電電流ではなく排出される Oz 濃度を 50 ppm に統一して試験を行った。メチレンブルーは反応式(1)-(20)を介して生成される Oz、OH、O、H2O2 及び反応に伴う UV 光によって分解される可能性がある。そこで、まず、別の外部オゾナイザで生成した濃度 50 ppm の Oz による分解(以下、Oz バブルビング)試験を行い、その他の要因を除外した際の分解試験を試みた。Oz バブルビングで得られた結果と、水中プラズマ源による試験結果を比較することで本装置におけるメチレンブルーの分解能力を評価した。

不活化試験においては、被処理物に細菌類である枯草菌芽胞芽胞液(Mesa Laboratories, Bacillus subtilis: ATCC No. 6633)を用いた。芽胞菌は、熱・放射線等による物理的作用や、薬剤や溶液酵素等による化学的処理に対して極めて耐久性を示す芽胞殻を形成する。また、比較的扱いやすく、Oz による影響を検討する際の指標菌として用いられる[11]。処理溶液は、導電率 100 μS/cm の滅菌水 100 ml に枯草菌芽胞液を 50 μl を供試したものとした。処理時間は 10～40 min とし、10 min 毎に採取した処理液を寒天平板表面塗抹法により培養温度 35℃で 24h 培養した。培養後の芽胞菌コロニー数はコロニーカウント法により計数し、残存芽胞菌を得た。各条件の比較は、生産曲線の指数減少期の勾配から生存菌数が 1/10 に減少する時間(以下 D 値)を求めて評価した[12]。なお、Oz の溶解能力は排 Oz 濃度 200 ppm において、処理時間 30 min で 0.1 mg/L 程度で、ほとんど溶解しない。また、本試験においても、Oz バブルビングと不活化特性を比較するため、投入電流ではなく排出される Oz 濃度を 200 ppm に統一して試験を行った。

Oz ガスを用いた水中プラズマによる芽胞菌は Oz、OH、O、H2O2 によって不活化される可能性がある。まず、別の外部オゾナイザで生成した濃度 200 ppm の Oz バブルビングを行い、その他の不活化要因を除外した際の芽胞菌の不活化を試みた。次に、OH のスカベンジャーであるマンニトールを処理溶液に添加し、OH 並びに H2O2 による影響を除外して不活化試験を行った。なお、処理溶液に添加したマンニトールの濃度は 5 g/L とし、これによる放電電流及び放電電力が変化しないことを確認した。以上の試験結果と、これまでに行ってきた水中プラズマによる試験結果を比較することで OH が芽胞菌に与える影響を検討した。また、OH 由来の遷移発光が不活化に寄与しないことを既に明らかにされているが[13]、本装置においても確認が必要であると考え、放電スペクトルの観測及び石英試験管を用いた透過光による不活化を試みた。放電スペクトルの観測はファイバ分光器を用いて行い、放電発光の積算時間は 10s とした。UV 光による不活化試験は、透過率 90 % の石英試験管内に同じ濃度の処理溶液を 5 ml 供試し、放電部から 5.0 mm 離れた位置に固定し 60 min 処理した。石英試験管の設置位置については、放電が石英管まで届かないことを確認している。

3. 実験結果と考察

3・1 メチレンブルーの分解に活性種が与える影響 Fig.4 に透過光強度と処理時間の関係を示す。透過光強度が最大に至るまでに要した時間は、Oz バブルビングで 15 min、水中プラズマで 10 min となり、本研究提案装置におけるメチレンブルーの基礎的な分解能力を示すことができた。また、Fig.4 中の①の領域は、水中プラズマを用いた時の最大強度が得られた 10 min において Oz により分解された領域を示したものであり、49.3 % となる。一方、Fig.4 中の②の領域は Oz 以外の要因として考えられる Oz、OH、並びに H2O2、UV 光により促進された分解された領域を示したものであり、50.7 % となる。このように、本研究提案の水中プラズマ源においても、Oz 以外の要因が有機物分解に有効利用されている。

そこで、多くの研究においてメチレンブルーは、触媒を利用した H2O2 と UV 光により効率的な分解が可能になることが報告されているが、触媒を利用せずとも H2O2 と UV 光によりメチレンブルーは緩やかに分解される。UV 光により
分解されるメチレンブルーは石英試験管を用いた分解試験により評価可能であるが、H\textsubscript{2}O\textsubscript{2}により分解されるメチレンブルーの反応は気液界面近傍でも行われるため、他の反応と区別できない。そのため、メチレンブルーの分解試験では、気液界面近傍の反応域及び処理溶液全体の反応域においてどの程度分解が行われるかは明確にできない。しかし、何れにせよ上昇する気泡中のO\textsubscript{3}による分解能力は、O, OH,並びにH\textsubscript{2}O\textsubscript{2}, UV光によるものと同程度であることが分かった。

〈3・2〉UV光が芽胞菌に与える影響　Fig.5に、O\textsubscript{2}ガスを用いた水中プラズマによる放電スペクトルの観測を行った結果を示す。309 nm付近にOHのバンドスペクトル（A'Σ→X^2Π）が観測された。また、O (777.4 nm, 844.6 nm), H\textsubscript{a} (656.3 nm), H\textsubscript{b} (486.1 nm)の発光が観察であり、OH遷移発光はO2遷移発光の約20％程度であった。しかし、DNA破壊を起こすことが知られている309 nm近傍のOH遷移発光強度を測定した。

Fig.6に、UV光による殺菌力の検討を行うべく、石英試験管内の芽胞菌に対して不活化試験を行った結果を示す。60min処理後にも残菌数に変化が見られなかったため、本装置によって芽胞菌の不活化効果が十分に見込めると考えられる。

〈3・3〉H\textsubscript{2}O\textsubscript{2}が芽胞菌に与える影響　Fig.7に、反応容器内のH\textsubscript{2}O\textsubscript{2}濃度の時間変化を示す。マンニトール非添加の場合、H\textsubscript{2}O\textsubscript{2}濃度は処理時間と共に高くなるが、40分経過後で18 mg/L程度である。H\textsubscript{2}O\textsubscript{2}による芽胞菌の不活化では数万mg/L以上の濃度が必要である。水中O2プラズマ源で生成されるH\textsubscript{2}O\textsubscript{2}による芽胞菌への影響は殆どないと考えられる。一方で、Arを用いた場合は40min経過後で3.5 mg/L程度観測されていたが9), 今回のO\textsubscript{2}を用いた場合は約5.1倍のH\textsubscript{2}O\textsubscript{2}濃度が観測された。これは、Arを用いた場合のH\textsubscript{2}O\textsubscript{2}の生成過程は反応式(10)に限定されるのに対して、O\textsubscript{2}を用いた場合は反応式(10)に加えて反応式(14), (16), (17), (18)が加わるためである。何れの場合もOH由来であることから、O\textsubscript{2}を用いた水中プラズマ源ではArを用いた場合よりもOHが生成されていることが確認され、OHによる不活化効果が十分に見込めると考えられる。

〈3・3〉活性種が芽胞菌の不活化に与える影響　Fig.8に、水中プラズマによる不活化試験時の芽胞菌コロニーの時間依存性を示す。200 ppmのO\textsubscript{3}バブリングの場合はD值=31.2 minである。マンニトール添加の場合はD値=22.5 minである。この時Arを用いた場合に同様に、マンニトールに捕捉される前の気液界面で生成されたOHが不活化に寄与している可能性がある。そのため、マンニトールの添加によって気液界面のOHの詳細な挙動を明らかにする必要があると考え、309 nm近傍のOH遷移発光強度を測定した。

Fig.9にその結果を示す。マンニトールの添加によりOH遷移発光強度は約33％まで低下することが確認された。Arを用いれた場合は、マンニトールの添加によりOH遷移発光強度が約50％まで低下し、マンニトール非添加時の2倍のD値が観測された。

Fig.4. Typical waveforms of voltage and current.

Fig.5. Optical emission obtained from the underwater plasma in the case when the operating gas is O\textsubscript{2}.

Fig.6. Temporal variation in CFU when UV light is irradiated by an underwater Plasma.
水多孔質膜利用の水中プラズマ源による芽胞菌の不活化過程の検討

そこで、メチレンブルーの分解試験において、水中プラズマ源の上昇気泡中のO₃による分解能力は、O₂、OH、並びにH₂O₂、UV光によるものと同程度であった。一方、芽胞菌の不活化の場合、H₂O₂、UV光による不活化は見込めないこととに加えて、短寿命ラジカルによる不活化効率は水中プラズマによる不活化領域の25%以下であった。また、被処理水は、メチレンブルー分解試験時の1/5にしているため、上昇する気泡内のO₂が被処理水から排出するまでの時間はメチレンブルー分解試験時の5倍短く、芽胞菌の不活化に関しては上昇気泡中のO₂が大部分の役割を担っていることになる。

我々は、別途、菌の不活化には耐性期なるものが存在し、ある一定の期間、殺菌剤が菌に接触し続けないと不活化が進行しないことを明らかにしている。本研究提案のプラズマ源は、メチレンブルーの分解試験で明らかにしたように、短寿命ラジカルが有機物の分解を促進する。また、原料ガスをArとした時は、気液界面の放電により生成されたOHが不活化を主に与えることを明らかにしている。しかし、耐性期を有する菌の不活化を行う場合は、酸化力が高くても短寿命である活性種は、耐性期を多少短くするに留まり、不活化率が被処理水から排出するまでの時間は1/5にしているため、上昇する気泡内のO₂が被処理水から排出するまでの時間はメチレンブルー分解試験時の5倍短く、芽胞菌の不活化に関しては上昇気泡中のO₂が大部分の役割を担っていることになる。

水多孔質膜利用の水中プラズマ源による芽胞菌の不活化過程の検討
化に大きく貢献できない。従って、対象とする菌と O₃を含む気泡との接触時間を長くすることが重要であることが明らかとなった。

Table 1. Approximate expression of the number of the residual bacteria for each sterilization method.

<table>
<thead>
<tr>
<th>Sterilization method</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of initial bacteria</td>
<td>(\approx 10^4)</td>
</tr>
<tr>
<td>O₃ bubbling</td>
<td>(y_1 = e^{-0.074t +9.27})</td>
</tr>
<tr>
<td>Underwater plasma with mannitol</td>
<td>(y_2 = e^{-0.052t +9.27})</td>
</tr>
<tr>
<td>(Underwater plasma with mannitol)</td>
<td>(y_2 = e^{-0.08t +9.27})</td>
</tr>
<tr>
<td>Underwater water plasma</td>
<td>(y_3 = e^{-0.113t +9.27})</td>
</tr>
</tbody>
</table>

4. まとめ

多孔質膜利用の水中プラズマ源を用いて細菌類である芽胞菌の不活化を行い、複数の反応域における不活化効率を比較及び評価した。その結果、メチレンブルーのような有機物の分解試験においては、O₃を含む上昇気泡による分解能力が、誘電体兼気泡生成素子として用いた多孔質膜の昇気泡中のガス発生装置の特性を明らかにした。すなわち、芽胞菌の不活化に関しては安定的な O₃が大部分の役割を担っていることが明らかとなった。JR

参考文献

マンゴーに発生する病害の防除を目指したプラズマミスト装置における芽胞菌及び大腸菌の殺菌

西村 豪志a)・堂園 大雅b)・後藤 弘輝b)・富永 大b)・迫田 達也c)

Sterilization of Bacillus Atrophaeus and Escherichia Coli using a Plasma Mist Source for Preventing Diseases of Mango

Takeshi NISHIMURA, Taiga DOZONO, Hiroki GOTO, Masaru TOMINAGA, Tatsuya SAKODA

Abstract

Apple Mango has been a representative product in Miyazaki. However, fruit rot disease such as Stem-end Rot and Anthrax Pathogen is serious. Therefore, it is necessary to perform sterilization. So, we fabricated two kinds of made sterilization devices operated in water mist. In order to confirm the usefulness of the source, we performed sterilization for Bacillus atrophaeus and Escherichia coli. It was confirmed the sterilization effect for both plasma sources.

Keywords: Apple Mango, Plasma, Sterilization, Stem-end Rot, Anthrax Pathogen

1. はじめに

宮崎県は、新たな需要創出のための"フードビジネス"を推進し、マーケットインの観点の一つから、農畜産物の輸出促進を図っている。しかし、大消費地である東京都、大阪府といった地域から遠隔なため、農畜産物の鮮度保持が困難であり、出荷後の品質保持が課題となっている。特に、宮崎県の特産果樹「完熟マンゴー」においては、出荷後に発生する炭疽病、軸腐病による腐敗が消費者への信頼を損ねており、その対策が課題となっている。沖縄県農業研究センターでは、収穫直後のマンゴーを対象に、軸腐病に対してハンダゴテを利用した果梗部熱処理試験、炭疽病に対して温湯処理試験を行い、病害抑制の報告を挙げている1)。しかし、前述した処理方法は直接マンゴーに熱を加えるため、処理後の個体がダメージを受けやすい、試験的な手法と言える。低濃度(0.041～0.125 ppm) O3を放出したビニールハウス内でマンゴー栽培を行い、病害抑制効果を確認した報告もあるが、O3の長時間暴露は、ホワイトスポットと呼ばれる果肉障害の発生を確認され、更に、O3は農薬取締法の区分 C-11：54 資材に該当するため2)、栽培条件化での利用が規制され、実利用不可な試験的手法である。

以上を背景に、著者等はプラズマによって生成される高酸化電位物質を殺菌剤と呼称し、マンゴー鮮度保持技術として応用を目指している。本研究では、O3 (2.07 V)に加え、更に高い電解電位を持つ OH ラジカル (2.81 V) や O2ラジカル (2.42 V)といった物質を殺菌剤として用いる。特に OH ラジカルは、フッ素 (2.89 V)に次ぐ高い酸化電位を有しており、O3では分解できないフッ素や酢酸などの難分解性有機物の分解も可能とされている3)。この OH ラジカルの一般的な生成法として、促進酸化処理で知られているO3/H2O2法や、H2O2/UVC法、O2/UVC法が挙げられる3)。OH ラジカルは以下の反応で生成される。

(1)式は放電によって生成された電子と水分子との衝突によるものであり、(2)式は酸素原子と水分子との反応によるものである。なお、OH ラジカルはその反応性の高さから存在時間は 2×107s 程度とされており、瞬時に生成・消滅するために生成後すぐに被処理物と反応させるければならない3)。式及び(4)式は O2の生成過程であり、O2の解離によって生成されたOラジカルとO2との反応によってO2が生成されるが、この過程のOラジカルは前述
のように O_3 よりも酸化電位が高い。なお、M は O, O_2, O_3 のいずれかを指す。また、(1)式及び(2)式によって生じた OH ラジカル同士の反応によって(5)式のように H_2O_2 が生成される。

$$H_2O + e (>6.4 \text{ eV}) \rightarrow H + OH + e \quad \text{(1)}$$
$$O + e (>5.1 \text{ eV}) \rightarrow O + \text{OH} \quad \text{(2)}$$
$$O_2 + e (>5.1 \text{ eV}) \rightarrow O + O \quad \text{(3)}$$
$$O + O_2 + M \rightarrow O_3 + M \quad \text{(4)}$$
$$\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O}_2 \quad \text{(5)}$$

著者等は、高湿度環境下で誘電体バリア放電を発生させることで O_3 のみならず高い酸化電位を有する OH ラジカルの生成を可能である装置（以下、プラズマミスト装置）を提案している。プラズマミスト装置を用いる二つの装置を作製し、マンゴーに発生する病害防除を目指している。一つ目は、マンゴー全体に O_3 及びミストを曝露させた装置（以下、プラズマミスト装置Ⅰ）である。二つ目は、マンゴーの軸部分から菌が侵入し実を腐敗させる轴腐病の防除を目指し、マンゴーの軸部分にのみ O_3 及びミストを曝露させる装置（以下、プラズマミスト装置Ⅱ）である。

本報告では、作製したプラズマミスト装置Ⅰの有用性を確認するために、一般に殺菌の指標として利用される枯草菌芽胞液（Mesa Laboratories Inc, B.Subtilis A TCC6633）を用いて、ミストの導入がない場合（以下、オゾンのみ）と、ミストの導入がある場合（以下、オゾン+ミスト）との比較検討を行った。次に、作製したプラズマミスト装置Ⅱの有用性を確認するために、大腸菌（K-12）を用いて、オゾン+ミストと、放電源を殺菌対象近傍に設置しミストを含んだ気体中で処理（以下、プラズマミスト）との比較検討を行った。

2. 実験
2.1. プラズマミスト装置Ⅰによる芽胞菌の殺菌
2.1.1. 実験方法

図1及び図2にプラズマミスト装置Ⅰの構成を示す。O_2 ガスをデジタル流量計に供給し流量を4.0 L/minに調整する。その後オゾナイザに供給し O_3 を生成する。なお、放電には6.25 kHzの高周波電源で駆動した。O_3 を生成後、ミスト発生器用ポンプに導入し、図1のオゾンのみの処理では、空のミスト発生器を通じてアクアルボックスから殺菌対象である芽胞菌が塗布された寒天培地に O_3 のみを曝露した。図2のオゾン+ミスト処理では、ミスト発生器を通じて生成されたミストと O_3 の混合気体を同様の寒天培地に曝露した。

O_3 濃度は被処理部において100 ppmとなるよう UV オゾンモニター（EG-2001B）を用いた。また、処理時間においては O_3 の絶対量を表す CT 値（product of concentration and processing time）を採用し、1000 ppm・min 間で最大12000 ppm・minとした。処理後は30℃に保ったインキュベーターで2日間培養しコロニーを形成させた。形成後は、無処理においては4とし、その他の処理条件は1とした。

図1 芽胞菌に対するオゾンのみの処理による構成

図2 芽胞菌に対するオゾン+ミスト処理による構成

2.1.2. 実験結果及び考察

表1に各条件におけるコロニー数を示す。なお、無処理においては平均値で示した。また、図3に無処理の時のコロニー数を100%とした生存率の CT 値変化を示す。同図より、どちらの条件においても約3000 ppm・minまで顕著な殺菌効果が得られない期間（以下、誘導期）があることが確認された。3000 ppm・min以降は CT 値の増加に伴い生存率が減少していることがわかった。その減少傾向はオゾン+ミストの方が大きくなった。殺菌の指標として生存率が10%になる時の CT 値（D値：Decimal value）を考えると、オゾン+ミストの処理は7000 ppm・min及び8000 ppm・minと、1000 ppm・min程度の差とになった。これらの結果から、プラズマミスト装置Ⅰの有用性が確認された。

誘導期が存在した原因として、芽胞菌の耐性の由来である芽胞殻を破壊するためにある一定量の O_3 が必要であることが挙げられる。また、オゾンのみの処理とオゾン+ミストの処理のどちらにおいても、生じた OH ラジカルの酸化電位が十分であることが確認された。
マンゴーに発生する病害の防除を目指したプラズマミスト装置における芽胞菌及び大腸菌の殺菌

2.1. 実験結果及び考察

2.1.1. 実験方法

図4及び図5にプラズマミスト装置IIの構成を示す。図4のオゾン+ミスト処理では、O₃ガスを流量計が3.0L/minを示すよう導入し、外部オゾナイザーにて生成したO₃とミスト発生器で生成させたミストと混合気体を、直径6mmのガラス管を通して処理対象である大腸菌が塗布された培地に曝露した。図5のプラズマミスト処理では、O₂ガスを流量計が3.0L/minを示すよう導入しミストと混合後、ガラス管に供給した。ガラス管の内壁及び外壁に貼付された鋼テープに電圧を印加し、O₂及びミストと反応させることでO₃及びその他の活性種を生成させた。オゾン濃度及び曝露方法は図4と同条件とした。各条件におけるN数は無処理を2、その他の処理条件は1とした。また処理時間は、オゾン+ミスト及びプラズマミストのいずれの条件においてもCT値で最大70ppm・minとし、10ppm・min間隔とした。

<table>
<thead>
<tr>
<th>表1 各条件におけるコロニー数</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT値 [ppm・min]</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>5000</td>
</tr>
<tr>
<td>6000</td>
</tr>
<tr>
<td>7000</td>
</tr>
<tr>
<td>8000</td>
</tr>
<tr>
<td>9000</td>
</tr>
<tr>
<td>10000</td>
</tr>
<tr>
<td>11000</td>
</tr>
<tr>
<td>12000</td>
</tr>
</tbody>
</table>

図3 各条件における芽胞菌の生存率のCT値変化

図6に大腸菌の希釈方法を示す。LB（Lysogeny Broth）培地上に十分培養された大腸菌（K-12）を滅菌水1mlに添加し希釈後、直径6mmのLB培地に2μl塗布し各条件の処理を行った。処理後は滅菌水5mlを塗布し入れ揽拌後、5μlを直径85mmのLB培地に塗布し、30℃に保たれたインキュベーターで2日間培養しコロニー形態とした。殺菌の評価方法はコロニーカウント法を採用した。

2.2. 実験結果及び考察

2.2.1. 実験方法

図4及び図5にプラズマミスト装置IIの構成を示す。図4のオゾン+ミスト処理では、O₃ガスを流量計が3.0L/minを示すよう導入し、外部オゾナイザーにて生成したO₃とミスト発生器で生成させたミストと混合気体を、直径6mmのガラス管を通して処理対象である大腸菌が塗布された培地に曝露した。図5のプラズマミスト処理では、O₂ガスを流量計が3.0L/minを示すよう導入しミストと混合後、ガラス管に供給した。ガラス管の内壁及び外壁に貼付された鋼テープに電圧を印加し、O₂及びミストと反応させることでO₃及びその他の活性種を生成させた。オゾン濃度及び曝露方法は図4と同条件とした。各条件におけるN数は無処理を2、その他の処理条件は1とした。また処理時間は、オゾン+ミスト及びプラズマミストのいずれの条件においてもCT値で最大70ppm・minとし、10ppm・min間隔とした。
この結果をもとに無処理のコロニー数を100％とした生存率のCT値変化を図7に示す。

表2 各処理条件における大腸菌のコロニー数

<table>
<thead>
<tr>
<th>CT値 [ppm・min]</th>
<th>オゾン+ミスト</th>
<th>プラズマミスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1025</td>
<td>1274</td>
</tr>
<tr>
<td>10</td>
<td>892</td>
<td>1020</td>
</tr>
<tr>
<td>20</td>
<td>905</td>
<td>1284</td>
</tr>
<tr>
<td>30</td>
<td>963</td>
<td>1400</td>
</tr>
<tr>
<td>40</td>
<td>815</td>
<td>575</td>
</tr>
<tr>
<td>50</td>
<td>994</td>
<td>314</td>
</tr>
<tr>
<td>60</td>
<td>802</td>
<td>604</td>
</tr>
<tr>
<td>70</td>
<td>773</td>
<td>442</td>
</tr>
</tbody>
</table>

図7 各条件における大腸菌の生存率のCT値変化

図7より、オゾン+ミスト処理による生存率は、無処理を除く全ての処理条件において約40％と、殺菌効果は得られたものの、CT値の増加に伴った減少傾向は見られなかった。一方、プラズマミストは40ppm・minまでの減少傾向はオゾン+ミスト処理と同様だが、それ以降は減少傾向が現れた。これは、プラズマミスト処理によって発生したO3以外の活性種による殺菌効果だと考えられる。これらの結果から、プラズマミスト装置の有用性が確認された。

今後、再現性をとるために、N数を増やして同様の実験を行い、作製した装置の有用性を確認すると共に、本来の目的である炭疽病菌及び酸化病菌の殺菌試験を行う予定である。

参考文献

1) 照屋亮・澤駒哲也・広瀨直人・牧志佑子・大城良計：「短時間温湯処理によるマンゴー炭疽病の防除」、園芸学研究、11巻2号、pp.265-271(2012-04)
2) 農林水産省：農業資材審議会農薬分科会特定農薬小委員会及び中央環境審議会土壌農薬部会農薬小委員会第10回合同会合「参考資料」意見・情報募集結果を踏まえた資材の区分整理」
5) 宮京功・日本オゾン協会：オゾンハンドブック、pp.10-12 (2004)
Abstract

Co-generation system has become an effective method to solve the global warming and energy problem. The system can achieve high efficiency both by using electric generation and by exhaust heat recovery. On the other hand, the development of the environmental improvement technology in a greenhouse is demanded agricultural sector. It is thought that a desiccant air conditioning system can solve these problems. In this paper, experiments aimed at establishing system operation methods according to absolute humidity of outside air were conducted.

Firstly, the experiment was conducted with air volume of both blowers on dehumidification side and regeneration side set to 640 m³/h. As the result, it was confirmed that temperature and relative humidity inside the greenhouse could be controlled to target ranges of inside the greenhouse when absolute humidity of outside air is less than 17 g/kg.

Secondly, the experiment was conducted when absolute humidity of outside air was very high. In this case, air volume of both blowers on dehumidification side and regeneration side were set to two different conditions. First condition of the blowers is 640 m³/h and another one is 740 m³/h. At the result, it was confirmed that setting the air volume of the blowers to 740 m³/h is better when absolute humidity of outside air is high.

Keywords: Co-generation, Desiccant air conditioning system, Greenhouse, Absolute humidity of outside, Air volume of blowers

1. はじめに

分散型電源を用いてエネルギーを供給するシステムとしてコーディケレーションシステムの利用に注目が集まりつつある。コーディケレーションシステムの特徴は、発電の際に発生した排熱を回収することで電気と熱を同時に得ることができ、総合熱効率70～80%以上と非常に高い効率が得られることがある。しかし、コーディケレーションシステムから発生する熱の温度は低く、図1のように使用用途が制限されていることが問題となっている。

一方、日本の農業経営における課題として図2に示すように「農業所得の安定」が最も高くなったり、これまで「農業資材（肥料、農薬、資材、燃料等）のコスト」、「収量の安定・向上」に課題が残されている。そのため、日本の農業経営において、農業所得を安定させるために農業資材コストを低減させ、収量を安定・向上させる技術が求められている。

1) 電気電子学工学専攻大学院生
2) 工学専攻エネルギーコース大学院生
3) 工学教育研究部教授
2. OA の絶対湿度とデシカント空調システムの送風機の風量による除湿性能の関係

2.1 実験目的

本章では、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を 640 m³/h に設定して温室内の除湿を行った。そして、OA の絶対湿度がどのような範囲までは、目標としている温室内の湿度に制御できることを目的として実験を行った。

2.2 実験方法

実験回路（換気方式）を図 3 に示す。実験は OA の絶対湿度がそれぞれ異なる 3 つの実験条件で行った。実験開始時から実験終了後までの OA 条件と実験開始時の温室内の条件を表 1 に、システムの条件を表 2 にそれぞれ示す。これらの実験条件においても実験開始時の温室内の相対湿度は目標としている範囲を超えており、実験開始時の温室内の温度は目標としている範囲内にある。

① 除湿過程では、除湿側の送風機を用いて、デシカントローター（以後 DW と略す）、換熱交換機（以後 SHE と略す）、温室の順に空気が流されていく。はじめに、除湿側の送風機を用いて OA を DW に送り、DW 内の吸着材を用いて PA に含まれる水分を吸着。吸着材は水分を吸着すると熱を発生させる。その際、発生した熱は SHE で奪われる。

② ①で除湿、熱交換された SA を温室内に送り込み、温室内の除湿を行う。

③ 再生過程では、再生側の送風機を用いて SHE、Heating Coil、DW の順に空気が流されていく。はじめに、再生側の送風機を用いて OA を SHE に送り、RA は吸着材から発生した吸着熱によって温められる。さらに、RA は排熱を模擬した温水によって再度温められる。

④ DW 内の水分を含んだ吸着材を再度使用できるように、③で温められた高溫の RA によって吸着材に含まれる水分の除去を行う。そして、吸着材の水分除去を行った RA は EA として OA に排気される。

⑤ ① ～ ④の工程を繰り返し、温室内の除湿を行う。その際、温室内、OA、PA、SA、RA、EA（図 3 を参照）のそれぞれの温度の測定を行う。そして、このような方法でデシカント空調システムを運転させ温室内的除湿処理を行った。また、温室内、OA、PA、SA、RA、EA のそれぞれの湿度を用いて絶対湿度（以後 AH と略す）を計算した。

図 1. 温水排熱量と利用量。

図 2. 日本の農業経営における課題。

表 1 実験条件。

<table>
<thead>
<tr>
<th>OA</th>
<th>Inside the Greenhouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH [g/kg]</td>
<td>Temp. [°C]</td>
</tr>
<tr>
<td>Experiment-1</td>
<td>13.6</td>
</tr>
<tr>
<td>Experiment-2</td>
<td>15.1</td>
</tr>
<tr>
<td>Experiment-3</td>
<td>16.7</td>
</tr>
</tbody>
</table>
2.3 実験結果

表 3 の 3 つの実験条件での実験開始時から実験終了後までの温室内の除湿処理の結果をそれぞれ示す。表 3 より、3 つの実験条件において実験終了後の温室内の温湿度を目標としている範囲に制御することができた。

図 4 ～6 に 3 つの実験条件の測定時間に対する温室内、OA、SA のそれぞれの絶対湿度を示す。図 4 ～6 より、換気方式の場合、OA の除湿を行っているため SA の絶対湿度は OA の絶対湿度よりも低くなっている。そして、その除湿の結果、OA が温室内に送られるため、実験終了後の温室内の絶対湿度は OA の絶対湿度よりも低くなったと考えられる。そのため、換気方式を用いると、温室内の絶対湿度を OA の絶対湿度よりも低く制御することができる。これより、温室内の絶対湿度は、換気方式の場合よりも低くなり、温室内の絶対湿度の上昇に伴って吸着材の除湿能力が低下したことを示している。その結果、OA の絶対湿度が 17 g/kg 以上の場合は、吸着材の再生能力は、今回のように換気方式の場合よりもさらに低下し、それに伴って吸着材の除湿能力も低下していくと考えられる。そのため、OA の絶対湿度が 17 g/kg 以上を超える場合にデシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を 640 m³/h に設定して温室内の除湿を行うと、目標としている温室内の絶対湿度に制御することが難しくなると考えられる。そのため、OA の絶対湿度が 17 g/kg 以上の場合、新たなシステム運転方式が必要になると考えられる。

図 7 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの SA の絶対湿度を示す。図 8 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの RA の絶対湿度を示す。図 9 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの PA の絶対湿度を示す。図 10 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの SHE の絶対湿度を示す。図 11 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの DW の絶対湿度を示す。図 12 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの RA の絶対湿度を示す。図 13 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの SA の絶対湿度を示す。図 14 に 3 つの実験条件での OA の絶対湿度に対する実験開始時から実験終了後までのそれぞれの RA の絶対湿度を示す。

图 4. OA、SA、温室内のそれぞれの絶対湿度（OA の絶対湿度 13.6 g/kg のとき）
図 5. OA、SA、温室内のそれぞれの絶対湿度（OA の絶対湿度 15.1 g/kg のとき）.

図 6. OA、SA、温室内のそれぞれの絶対湿度（OA の絶対湿度 16.7 g/kg のとき）.

図 7. 実験-1～実験-3 の OA の絶対湿度に対する SA と PA の平均絶対湿度.

図 8. 実験-1～実験-3 の OA の絶対湿度に対する RA と EA の平均絶対湿度.

3. OA の絶対湿度が非常に高い場合のデシカント空調システムの送風機の風量による除湿性能の関係

3.1 実験目的

2 章では、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を 640 m³/h に設定した場合、OA の絶対湿度が 17 g/kg 未満であれば、目標としている温室内の湿温度に制御できるということが分かった。しかし、OA の絶対湿度が 17 g/kg 以上の場合でも温室内の環境改善が求められる。これまでに、デシカント空調システムの除湿側と再生側の送風機の風量を上げることでデシカント空調システムの除湿性能が向上することが分かっている。また、デシカント空調システムの除湿側と再生側の送風機の DW と SHE の面風速は 2 〜 4m/s が良いといわれている3)。

そこで、本章では、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を 640 m³/h に設定した場合と 740 m³/h に設定した場合の 2 つのシステム条件で温室内の除湿を行った。そして、OA の絶対湿度が 17 g/kg 以上の場合、どちらのシステム条件であれも、目標としている温室内の湿温度に制御できるかを目的として実験を行った。

3.2 実験方法

実験回路は前章で使用した実験回路（図 3）を使用した。実験は OA の絶対湿度が 17 g/kg 以上の場合に、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を 640 m³/h に設定した場合と 740 m³/h に設定した場合のそれぞれ異なる 2 つのシステム運転方式で行った。実験開始時から実験終了後までの OA の条件と実験開始時の温室内のそれぞれの条件を表 4。システムのそれぞれの
条件を表5にそれぞれ示す。それぞれの実験において、システム条件は、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量、DWとSHEの面風速以外はすべて同じである。また、どの条件においても実験開始時の温室内的相対湿度と温室内の温度は目標としている範囲を超えてい。また、実験手順は2章と同様である。

3.3 実験結果

図9にデシカント空調システムの除湿側と再生側の送風機の風量が640 m³/h、図10に740 m³/hの実験開始時から実験終了後までの温室内的除湿処理の結果をそれぞれ示す。図9には実験開始時の温室内的相対湿度、温度、絶対湿度が示されていない。これは、実験開始時の絶対湿度が30 g/kgを超えており、空気線図上でプロットできなかったためである。図10には実験開始時から実験終了後までの温室内的相対湿度、温度、絶対湿度の変化がそれぞれ示されている。また、それぞれの図には目標としている温室内の相対湿度60～80%、温室内の温度18～25℃の範囲がそれぞれ示されている。

図9のデシカント空調システムの除湿側と再生側の送風機の風量が640 m³/hの場合、実験終了後の温室内の温度を目標としている範囲に制御することができなかったが、温室内の相対湿度は目標としている範囲に制御することができた。

次に、図11にデシカント空調システムの除湿側と再生側の送風機の風量が640 m³/h、740 m³/hのそれぞれのPA、SA、α、図12にデシカント空調システムの除湿側と再生側の送風機の風量が640 m³/h、740 m³/h、それぞれのRA、EA、βをそれぞれ示す。α、βは2章の式(1)、(2)を用いてそれぞれ計算した。

デシカント空調システムの除湿側と再生側の送風機の風量が640 m³/hの場合、図11より、α=+2.60%となり、PAの除湿がうまくできなかった。図12より、β=-0.91%となり、吸着材の再生がうまくできていないことが分かる。したがって、PAの除湿がうまくできなかった原因は、吸着材の再生がうまくできなかったことであると考えられる。そのため、図10より、実験開始時から実験終了後まで温室内の温度と絶対湿度が低下しているのは、除湿処理できなかったPAの温度と絶対湿度が温室内の温度と絶対湿度よりも低く、その空気が温室内に送り込まれたからだと考えられる。

デシカント空調システムの除湿側と再生側の送風機の風量が740 m³/hの場合、図11よりα=8.54%となり、PAの除湿がうまくできた。これは、図12より、β=+30.6%となり、吸着材の再生がうまくできたためであると考えられる。したがって、PAの除湿がうまくできた原因は、吸着材の再生がうまくできたためであると考えられる。

これより、OAの絶対湿度が17 g/kg以上の場合、デシカント空調システムの除湿側と再生側の送風機の風量を740 m³/hに設定して温室内の除湿を行うことで、温室内の相対湿度目標としている範囲に制御できることができた。
図9. 温室内の除湿処理の結果（送風機の風量が640 m³/h のとき）。

図10. 温室内の除湿処理の結果（送風機の風量が740 m³/h のとき）。

図11. 送風機の風量が640 m³/hと740 m³/hのSAとPAの平均絶対湿度。

図12. 送風機の風量が640 m³/hと740 m³/hのEAとRAの平均絶対湿度。

4. 結論

本稿では、OAの絶対湿度に応じたシステム方式の確立を目的として2つの実験を行った。以下にその結果を示す。

[1] OAの絶対湿度とデシカント空調システムの送風機の風量による除湿性能の関係

デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を640 m³/hに設定した場合、OAの絶対湿度が17 g/kg未満であれば、目標としている温室内の温度を制御できることを分かった。

[2] OAの絶対湿度が非常に高い場合のデシカント空調システムの送風機の風量による除湿性能の関係

OAの絶対湿度が非常に高い場合、デシカント空調システムの除湿側と再生側のそれぞれの送風機の風量を740 m³/hに設定して温室内の除湿を行うことで、温室内の相対湿度を目標としている範囲に制御できることを分かった。

参考文献

1) 中塚勉、土本信孝、毛利邦彦: “環境にやさしい新エネルギーの基礎”，森北出版株式会社，2007。
2) 平成24年度新エネルギー等導入促進基礎調査(省エネルギー・再生可能エネルギーに関連する熱の有効利用促進施策に関する調査)報告書、株式会社三菱総合研究所，pp.8-10, 2013。
3) 財団法人ヒートポンプ・蓄熱センター低温排熱利用機器調査研究会:「デシカント空調システム概説の調査システムを目指して」, 私人出版, p.9, pp.12-17, pp.36-43, pp.70-71, pp.134, pp.176, pp.187-190, 2006。
4)「平成24年度 食料・農業・農村白書」平成24年度食料・農業・農村の動向, 第1部 第3章 第4節農業産出額と農業所得等の動向, 農林水産省。
Design of Thermoelectric Power Generation System Using Solar Thermal Energy

Tomoko ISHITSU, Noriyuki HAYASHI, Htin Kyaw Oo

Abstract

In recent decade, global warming or shortage of resources fossil fuels are becoming large issue inhibiting the development of industry. In the increased demand for resources in the world, Japan has limited resources so that it is critical to secure a stable supply of resource. Therefore, the promotion of energy conservation and the introduction of renewable energy has become an important challenge.

In this research, a thermoelectric generator system is made to utilize solar heat energy. This system using solar heat collected by a Fresnel lens produces electric power. The main feature of the system is that conversion part consists of a fresnel lens and thermoelectric generator although general solar thermal power generation is equipped with turbines. Firstly, Fresnel lens and thermoelectric generator constructed conversion part. Secondly, in order to obtain output power from conversion part effectively, maximum power point technique is provided for controlling output voltage of thermoelectric generator. Maximum power point technique part, having microcontroller and DC-DC convertor, is the way that microcontroller can calculate or adjust boosting ratings only by reading open circuit voltage of thermoelectric generator. Therefore, this part reduces number of components as much as possible.

After constructing this system, four experiments are conducted. First three experiments purposed to confirm whether conversion part can produce output power. The other experiment aims to check if maximum power point works.

Keywords: Thermoelectric generator, Solar thermal power, Maximum power point tracking

1. INTRODUCTION

Due to global warming and shortage of resources fossil fuels such as coal and gas, concern toward the environment worldwide is increasing in recent decade. Thus, need of renewable energy are expected to heighten further in the future. Although there are diversified renewable energy, solar thermal power is utilized in this paper.

Low and middle temperature thermal energies are paid wide attention as one of the distributed resources that can be converted to electric power. The middle-temperature thermal energy, e.g. at around 600 degree C and lower, can be changed to the steam energy followed by the generation of the electric power. Conventional generation system such as steamturbine generator system, stirling engine generator system, etc. can be used to this purpose1) 2).

Meanwhile, the thermoelectric generation (TEG) is one of the promising methods that can utilize thermal energy distributing in a wide range of temperatures. Particularly, TEG can be used to easily convert low-temperature unutilized thermal energy at around 200 degree C and below to the electricity3) 4) 5) 6). TEG is composed of n-and p-doped semiconductor pellets electrically connected in series and thermally in parallel. In the power generation mode, every pellet produces a voltage differential when a temperature gradient is established at its side, thanks to the Seebeck effect; the voltage magnitude is linearly dependent on temperature gradient and the Seebeck coefficient, which is a property of the material used and varies with temperature7).

The TEG system assumed in this paper can be seen as a system in the power supply device to produce electricity by utilizing solar heat effectively. In addition, it is proposed that the system not only produces electricity but also introduce using solar thermal power easily since the commercial is large-scale. Therefore, the purposes of this paper are (1) to provide new power supply device utilizing solar thermal power and (2) to obtain electric power from solar heat by using TEG module and fresnel lens for the conversion part and (3) to improve the power from TEG by applying maximum power point tracking (MPPT)8) 9). The purposed TEG system is divided by two parts. Its conversion part consists of a TEG module and Fresnel lens which condense sun light to the TEG module. In addition, the MPPT part is designed based on Arduino Uno, DC-DC convertor and TEG module.

2. CONVERSION PART

2.1 Design of TEG module

TEG module’s design is shown in Figure 1. In this case that solar heat is utilized for TEG’s heat source, TEG must be sandwiched between metals in order to obtain temperature efficiently.
As described in Figure 1, TEG is held by two aluminum plates (90 mm × 90 mm) and the two thermometer are sandwiched between TEG and plates. And then, there are two holes to let cool water go through in aluminum plate of low temperature side.

2.2 Measurement of TEG module characteristics

In order to design entire system, the basic TEG module’s characteristics must be measured for the design of TEG system in this thesis. The equivalent circuit of TEG module is depicted within red line in Figure 2. \(R_{in} \) is the internal electric resistance of TEG and assuming that a load, \(R_{load} \) is connected to terminal of the TEG. \(V_{oc} \) is under open-circuit conditions which means that \(R_{load} = \infty \). Changing \(R_{load} \) enables to measure the voltage versus current characteristic under condition that a heater keeps each temperature of hot side constant.

As well as Figure 4 shows \(V-P \) characteristic. As shown in Figure 4, power is proportional to the square of temperature difference between hot and cold sides. At the maximum power, \(V = 5.01 \) V and \(I = 1.98 \) A, which means that the maximum power occurs when \(V \) is half of \(V_{oc} \) and \(I \) is half of \(I_{sc} \). Also, it is represented by following equation.

\[
P_{max} = \frac{1}{2} V_{oc} \frac{1}{2} I_{sc}
\]

2.3 Preliminary experiment

Firstly, by using data logger, this preliminary experiment is conducted in order to measure the output voltage \(V_{oc} \) and surface-temperature of TEG module as basic characteristics. In practice, TEG system is set outside and operated manually in shown Figure 5.

As described in Figure 1, TEG is held by two aluminum plates (90 mm × 90 mm) and the two thermometer are sandwiched between TEG and plates. And then, there are two holes to let cool water go through in aluminum plate of low temperature side.

Consequently, Figure 3 is the experimental result of \(V-I \) characteristic at 230 degree C on hot side of TEG module.

Figure 6 and Figure 7 indicate the result of preliminary experiment. It is confirmed that \(V_{oc} \) produces around 2.3 V normally during clear day, which would be used to confirm whether sun-tracking works. Then, the temperature of heat side keeps 71 degree C.
As described in Figure 1, TEG is held by two aluminum plates (90 mm × 90 mm) and the two thermometer are sandwiched between TEG and plates. And then, there are two holes to let cool water go through in aluminum plate of low temperature side.

Fig. 1. TEG module in profile.

2.2 Measurement of TEG module characteristics

In order to design entire system, the basic TEG module’s characteristics must be measured for the design of TEG system in this thesis. The equivalent circuit of TEG module is depicted within red line in Figure 2.

\[R_e \] is the internal electric resistance of TEG and assuming that a load, \(R_{load} \) is connected to terminal of the TEG. \(V_{oc} \) is under open-circuit conditions which means that \(R_{load} = \infty \). Changing \(R_{load} \) enables to measure the voltage versus current characteristic under condition that a heater keeps each temperature of hot side constant.

Fig. 2. The circuit for the measurement of V-I characteristic.

Consequently, Figure 3 is the experimental result of V-I characteristic at 230 degree C on hot side of TEG module.

Fig. 3. V-I characteristic at 230 deg-C.

2.3 Preliminary experiment

Firstly, by using data logger, this preliminary experiment is conducted in order to measure the output voltage \(V_{oc} \) and surface-temperature of TEG module as basic characteristics. In practice, TEG system is set outside and operated manually in shown Figure 5.

Fig. 5. Picture of conversion part.

Figure 6 and Figure 7 indicate the result of preliminary experiment. It is confirmed that \(V_{oc} \) produces around 2.3 V normally during clear day, which would be used to confirm whether sun-tracking works. Then, the temperature of heat side keeps 71 degree C.

Fig. 6. The output voltage of TEG module.

Fig. 7. The temperature of TEG module.

2.4 Experimental set up and method

On Sun-tracking, stepping motor is controlled by Arduino Uno depending on time. The purpose of this experiment is to confirm whether the TEG module produces enough electricity or not when applying simple way for sun-tracking. This experiment is carried out under the condition of clear day for two hours. Also, a data logger is connected in parallel with the TEG module, in order to measure the accuracy output voltages from the TEG module.

2.5 Results

As shown in Figure 8, it is confirm that TEG module is able to produce enough electricity because the output voltage is higher than the threshold 2.3 V.

In addition, the TEG module can produce the output voltage over threshold regardless of season. The reason is that the voltage from TEG module is higher than threshold in both May and August. Thus, it decided that the simple way without adjustments to detail direction is applied in this system.

Fig. 8. The output voltage on sun-tracking.

3. MPPT PART

3.1 Experimental set up and method

MPPT part is shown in Figure 9, which consists of DC-DC converter, Arduino Uno for microcontroller and TEG module\(^{10, 11}\). TEG module produces electricity using solar heart and supplies it to DC-DC convertor. After reading output of TEG module, Arduino Uno sends Pulse Width Modulation (PWM) to DC-DC convertor because it conducts MPPT\(^{12, 13}\). In addition, DC-DC convertor boosts output from TEG module up to the voltage required by load.

Fig. 9. The connection of MPPT part.

All parameter for boost converter listed in Table 1.

<table>
<thead>
<tr>
<th>Component’s parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>1.15V</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>62.5 kHz</td>
</tr>
<tr>
<td>Ripple voltage</td>
<td>1 %</td>
</tr>
<tr>
<td>Duty</td>
<td>0.81</td>
</tr>
<tr>
<td>Inductor</td>
<td>100 μH</td>
</tr>
<tr>
<td>Electrolytic capacitor</td>
<td>47 μF</td>
</tr>
<tr>
<td>Schottky diode</td>
<td>IN5819</td>
</tr>
<tr>
<td>MOSFET</td>
<td>IRLU024</td>
</tr>
</tbody>
</table>
3.2 Analysis of MPPT part

Figure 10 shows that the transition of duty verse voltage and current from TEG module when $V_{oc}=2.3$ V with DC-DC convertor. In this analysis, the transition of output voltage and current are measured by changing duty.

![D-V and D-I characteristics](image)

Output power P is the product of experimental voltage and current from TEG module. Figure 11 is the graph of output power when applying each duty. As shown in Figure 11, the power depends on duty. In case that $V_{oc}=2.3$ V, the TEG module produces the maximum output power at the duty of 50 % since the voltage is half of V_{oc}. Without MPPT, there is a possibility of obtaining low power because of not considering duty such as 10 % or over 80 %. Therefore, the maximum power is effectively obtained when MPPT is performed by changing duty. It is confirmed that the MPPT part improves effectively output power of TEG module.

![D-P characteristic](image)

On the other hand, although duty at 40 % and 60 % are different from the maximum power, the power difference between them is only 40 mW. The reason in detail is described as follows. As explained, the each power is expressed by the following equation.

\[
\left(\frac{V - V_{max}}{V_{max}}\right)^2 = \left|\frac{P_{max} - P(V)}{P_{max}}\right|
\]

(2)

Left side corresponds to the square of mismatch between V and V_{max} and right side indicates the difference between P_{max} and P. As known Figure 12 that expresses (2), it is clear that the voltage has little affect on near to the half of V_{oc} because the absolute value of left side is proportional to square of right side’s value. In more detail, Figure 13 is depicted to show definition of $\Delta V-\Delta P$. Therefore, the output power difference is small value so that there is no need to set V to half of V_{oc} accurately. As these result, MPPT only needs to prevent the voltage from being excessively decreased low voltage.

![$\Delta V-\Delta P$ characteristic](image)

![Definition of $\Delta V-\Delta P$](image)

5. CONCLUSION

This research results can be summarized as follows:
1) The TEG system produces electricity by utilizing solar-heat although its conversion part consists of only TEG module and Fresnel lens. It proposes the new easy way about power supply to use solar-heat that Fresnel lens is assembled instead of huge solar collector. In comparison with commercial solar thermal generation, this TEG system is not only small scale but also low cost.
Therefore, it is possible to introduce this system easily. In addition, this TEG system is designed to apply MPPT for TEG’s characteristic, in order to get its output power at high efficiency. The power consumption of MPPT part is also important for energy harvesting. This MPPT part can reduce the power consumption by using TEG characteristics because of reducing sensors.

2) In case of this TEG system, output power of TEG module is less than 10 V in practice, although own TEG module can produce up to 10 V. This is because the Fresnel lens is too small that it is not collect enough solar-heat. Thus, there are no harvest if TEG system works except clear days.

3) The MPPT part design can further be enhanced by increasing the accuracy of MPPT and improving the efficiency in DC-DC convertor. The program of this TEG system can be modified to be better performance. This TEG system can produce higher output power by extending Fresnel lens’s size. Furthermore, TEG system can be added a charge control circuit for battery if the output power from module.

ACKNOWLEDGEMENTS

The author would like to specially thank Prof. Noriyuki HAYASHI in University of Miyazaki, the author’s principle adviser for indispensable suggestions and guidance.

The author is very grateful to Dr. Hitn Kyaw Oo, Head Faculty of Electric Engineering in University of Technology (Yatanarpon Cybercity) for hopeful discussions, technical advises and encouragement to my researches.

I would also like to express my gratitude to Doctor student in my laboratory members, Masatoshi OKU. Finally, I would like to express my gratitude for everyone who may concern with this program.

REFERENCES

4) Takenobu K., Overview of Thermoelectric Power Generation Technologies in Japan, Shonan Institute of Technology, 2011.

高圧配電線路におけるフェラッチ効果と逆潮流による電圧変動に関する研究

比江島 大輝 a)・甲斐 貴大 b)・Thin Thin Hlaing c)・林 則行 c)

Study on Voltage Fluctuation due to Ferranti Effect and Reverse Power Flow in High Voltage Distribution Line

Daiki HIEJIMA, Takahiro KAI, Thin Thin Hlaing, Noriyuki HAYASHI

Abstract

In this paper, we investigated the relationship between static condenser installation and the characteristic of voltage variation due to Ferranti effect in high voltage distribution system incorporating with PV system. We investigated about the suppression of the Ferranti effect by detaching the static condenser capacitors. Focusing on the change in system voltage due to the Ferranti effect, we simulated the voltage change in the presence or absence of the static condenser capacitors. In simulation result, the highest voltage reduction occurred when the static condenser capacitor at the node number 24 was removed. However, the reduction of voltage rise is small as if only one static condenser is removed. Therefore, in order to control the system voltage by suppressing the Ferranti effect, it is necessary to release plenty of phase advance capacitors.

Keywords: Reverse Power Flow, Ferranti effect, Simulation

1. はじめに

近年、自然エネルギーへの関心の高まりから、分散型電源の導入が進んでいる。分散型電源で発電された余剰電力は電力系統に逆潮流することで売電できるが、近年配電系統の電圧上昇によって逆潮流が困難になり、余剰電力が売電できない問題が発生している。この系統電圧の上昇には逆潮流による電圧上昇やフェランチ効果による電圧上昇、変電所にて不安定な出力などが上げられる。今回、逆潮流による電圧上昇とフェランチ効果による電圧上昇の2つに注目して検討を行った。電力系統に逆潮流を行った場合、変電所から流れ込む電力と逆潮流の影響により接続点での電圧が上昇する。また、受電家が設置している進相コンデンサ（SC）が系統電圧を上昇させる現象が挙げられる。これをフェランチ効果と呼ばれている。今後も分散型電源の導入増加が見込まれる中、系統電圧の適正維持は非常に重要な課題となっている。

本研究では、PVシステムが組み込まれた高圧変電系統を対象として、線路上における進相コンデンサの容量や設置場所とフェランチ効果による電圧上昇特性との関係を調査する。しかしこ実線路における実態調査のみでは十分な検討ができないため、シミュレーションによる解析結果に基づき、逆潮流やフェランチ効果による電圧上昇について検討する。

2. 解析及び分析

2.1 解析方法と項目

2.1.1 解析方法

本解析では、潮流計算の代表的手法として電力回路網の接点アドミタンス行列をもとにしたNewton-Raphson法と閉路インピーダンス行列をもとにしたプログラムをMicrosoft Visual C++で作成した。今回潮流計算を行った系統図を図1に示す。図1は配電系統をモデル化した仮想的な系統である。20 MVA容量の変電器から給電される20kV配電系統で、20軒の需要家と1つのPVから構成されている。総契約電力は2.44 MW、総SC容量は1.02 MVARであり、PVは変電所から一番遠い地点に設置した。

図1で、線路の支点にある丸記号はノード、番号付けされている四角枠は需要家、そして長さは変電所からノードまでの距離を示しており、変電所からの距離を基準に4つにエリア分けを行った。また、ノード間の線路はアルミ架空絶縁線路、鋼ケーブル、及びアルミケーブルを想定し、R=0.0309 Ω/km ～1.1500 Ω/km、X=0.1007 Ω/km ～0.4463 Ω/kmとした。
2.1.2 解析項目

本解析では、次の項目について検討を行った。
① 逆潮流による電圧上昇
② SC切り離しによるフェランチ効果の抑制

本稿では、逆潮流とフェランチ効果による系統電圧の変化に注目し、負荷の条件を変化させた場合における系統電圧の変化を検討した。

2.2 電圧の上限値

電圧の品質レベルについては、電気事業法第26条施行規則第44条に、「標準電圧100Vの場合、101V±6Vを超えない値、標準電圧200Vの場合、202V±20Vを超えない値」を維持するよう規定されている。また、それ以外の標準電圧の最大電圧は、使用電圧に表1に規定する係数を乗じた電圧であり、6.6 kV配電系統の場合は最大電圧が6.9 kV（単位法で1.045 pu）である。

表1 最大電圧の求め方に使用する係数

<table>
<thead>
<tr>
<th>使用電圧の区分</th>
<th>係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000V以下</td>
<td>1.15</td>
</tr>
<tr>
<td>1,000Vを超える500,000V未満</td>
<td>1.15/1.1</td>
</tr>
<tr>
<td>500,000V</td>
<td>1.05, 1.1又は1.2</td>
</tr>
<tr>
<td>1,000,000V</td>
<td>1.1</td>
</tr>
</tbody>
</table>

3. 重負荷時シミュレーション解析結果

3.1 シミュレーション内容

重負荷時の解析には需要家の全ての負荷が100%使用されていると仮定する。PVシステムの発電量を総契約電力の0%から100%まで20%ずつ変化させた場合のシミュレーション解析を行い、各ノードの系統電圧の変化に注目することで逆潮流による電圧上昇について検討を行う。その後、SCを開放させた場合の解析を行い、どのようなSCを切り離すことで電圧上昇を抑制できるか検討を行う。

3.2 逆潮流による電圧上昇

図2にPVシステムが総契約電力の20%の発電を行った場合のシミュレーション解析結果を示す。図2より、逆潮流によって各ノードの系統電圧が上昇していることが確認できる。また、ノード18, 19, 24, 25, 26, 32においては他のノードと比較して系統電圧が大きく上昇し、その中でもPVシステム設置ノードにおいて最も系統電圧が上昇した。これは、PVシステム設置場所に近いため、逆潮流による影響が大きいと考えられる。

表2にPVシステムの発電量が0%から100%までのPVシステム設置ノードにおける電圧上昇について示す。表2より、PVシステムの発電量が増加するに伴い系統電圧が上昇し、最大で1.162 puまで系統電圧が上昇した。また、6.6 kV配電系統の最大電圧は1.045 puである。そのため、PVシステムの発電量が40%から100%においては系統電圧の上限値を超えていくことから、逆潮流を行うことができずに電力の売電ができないことが考えられる。

3.3 SC開放による電圧制御

前節において、逆潮流により系統電圧が大きく上昇することができる確認できた。そのため、SC切り離しによるフェラチ効果の抑制が必要である。
本節では、PVシステムの発電量が20%と100%の場合において、各エリアのSC開放によるフェランチ効果の抑制を行った。図3にPVシステムが20%の発電を行った場合、図4にPVシステムが100%の発電を行った場合のエリア1のSCを開放した解析結果を示す。図3、図4より全てのSCを開放することで系統電圧が大きく低減することが確認できる。逆潮流によって系統電圧が上昇したPVシステム設置ノードでは、エリア1のSCを開放することでPVシステムの発電量が20%のとき0.065%、発電量が100%のとき0.061%の系統電圧が低減した。また、全てのSCを開放した場合は、発電量が20%のとき0.850%、発電量が100%のとき0.111%の系統電圧が低減した。

表3に各エリアのSCを開放した場合のPVシステム設置ノードでの電圧低減率を示す。各エリアのSCを開放した場合、PVシステムが設置されているエリア3のSCを開放することで最も系統電圧が低減した。また、発電量が100%のときSC開放による電圧低減率が大きいことから、PVシステムの発電量が増加することでフェランチ効果による系統電圧の上昇も増加することが考えられる。

次に、最も電圧上昇の低減が大きかったエリア3の各SCを開放した場合のシミュレーション解析を行った。図5にPVシステムの発電量が20%の場合、図6にPVシステムの発電量が100%の場合のエリア3内のノード21のSC開放時の解析結果を示す。ノード21のSCを開放することでPVシステム設置ノードにおいて発電量が20%の場合0.033%、発電量が100%の場合0.031%の電圧が低減した。その他のノードのSCを開放した場合の解析結果を表4に示す。各ノードを比較すると、ノード23のSC容量が一番大きく、ノード27がPVシステムに一番近い。しかし、SC開放による電圧上昇の低減はノード24のSC開放時に最大となった。このことから、フェランチ効果の抑制にはPVシステムに近く、その中でも容量のSCを開放することが有効であると考えられる。

表3 各エリアのSC開放による電圧変化

<table>
<thead>
<tr>
<th>エリア</th>
<th>容量[kVAR]</th>
<th>電圧低減率 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>全て接続</td>
<td>2444</td>
<td>216</td>
</tr>
<tr>
<td>エリア1</td>
<td>432</td>
<td>0.065</td>
</tr>
<tr>
<td>エリア2</td>
<td>861</td>
<td>0.195</td>
</tr>
<tr>
<td>エリア3</td>
<td>444</td>
<td>0.389</td>
</tr>
<tr>
<td>エリア4</td>
<td>707</td>
<td>0.204</td>
</tr>
<tr>
<td>全て開放</td>
<td>2444</td>
<td>0.850</td>
</tr>
</tbody>
</table>

図4 発電量が100%の場合の電圧変化

図5 発電量が20%の場合の電圧変化
ノード番号	電圧 [pu]	発電量	発電量
全て開放 | 1.18 | 20% | 0%
全て接続 | 1.14 | | |
ノード21開放 | 1.17 | | |
20%の発電を行った場合、図 9 に PV システムが 100%の発電を行った場合のエリア 1 の SC を開放した解析結果を示す。全ての SC を開放することで系統電圧が大きく低減した。逆潮流によって最も系統電圧が上昇した PV システム設置ノードでは、エリア 1 の SC を開放すると発電量が 20%の場合は 0.064%、発電量が 100%の場合は 0.061%の系統電圧が低減した。また、全ての SC を開放すると発電量が 20%の場合は 0.683%、発電量が 100%の場合は 0.928%の系統電圧が低減した。

表 6 に各エリアの SC を開放した場合の PV システム設置ノードでの電圧と電圧低減率を示す。各エリアの SC を開放した場合、PV システムが設置されているエリア 3 の SC を開放することで最も系統電圧が低減し、PV システムの発電量が 20%の場合においても系統電圧を適正範囲内に収めることができた。しかし、PV システムの発電量が 100%の場合、逆潮流によって大きく電圧が上昇していることから、全ての SC を開放した場合でも系統電圧を適正範囲内に収めることができなかった。

次に、最も電圧上昇の低減が大きかったエリア 3 の各 SC を開放した場合のシミュレーション解析を行った。図 10 に PV システムの発電量が 20%の場合、図 11 に PV システムの発電量が 100%の場合のエリア 3 内のノード 21 の SC 開放時の解析結果を示す。ノード 21 の SC を開放することで PV システム設置ノードにおいて発電量が 20%の場合 0.033%、発電量が 100%の場合 0.031%の電圧が低減した。その他のノードの SC を開放した場合の解析結果を表 7 に示す。重負荷時と同様に、ノード 24 の SC 開放時に最も電圧低減率が大きいことから、フェランチ効果の抑制には PV システムに近く、その中でも電力の SC を開放することが有効であると考えられる。また、1 つの SC 開放では電圧低減率が小さいため、フェランチ効果の抑制による電圧制御には複数の SC を開放する必要がある。
図11 発電量が100%の場合の電圧変化

表7 各エリアのSC開放による電圧変化

<table>
<thead>
<tr>
<th>開放ノード</th>
<th>SC容量 [kVAR]</th>
<th>距離 [m]</th>
<th>電圧低減率 [%]</th>
<th>20%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ノード21</td>
<td>50</td>
<td>4299</td>
<td>0.033</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>ノード23</td>
<td>81</td>
<td>4404</td>
<td>0.053</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>ノード24</td>
<td>50</td>
<td>1842</td>
<td>0.156</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td>ノード25</td>
<td>20</td>
<td>899</td>
<td>0.068</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>ノード26</td>
<td>20</td>
<td>10</td>
<td>0.086</td>
<td>0.116</td>
<td></td>
</tr>
</tbody>
</table>

5. 結論

本研究では、PVシステムが組み込まれた高圧配電系統を対象として、線路上におけるSCの容量や設置場所とフェランチ効果による電圧上昇特性との関係を調査した。実線路における実態調査のみでは十分な検討が取れないため、シミュレーションによる解析結果に基づき、逆潮流やフェランチ効果による電圧上昇について検討した。

重負荷時においては、逆潮流により全てのノードで系統電圧が上昇し、その中でもPVシステム設置付近のノードで系統電圧が大きく上昇した。また、PVシステムの発電量が40%から100%の場合においては、系統電圧が上限値である1.045puを超えた。そのため、SC切り離しによるフェランチ効果の抑制を行った。その結果、エリア3のSC開放時に最も系統電圧の上昇が低減した。また、エリア3内の各ノードのSCを開放した場合、ノード24のSC開放時に電圧上昇が低減したことから、フェランチ効果の抑制はPVシステムに近く、その中でもSC容量が大きいSCを開放することが有効であることが分かった。

参考文献

1) 経済産業省資源エネルギー庁電力・ガス事業部:新能源の大量導入に伴う影響とその対策について,平成20年9月.
4) 五反田一奇:太陽光発電の導入を想定した高圧配電線路の力率改善用コンデンサと線路電圧に関する研究,平成27年.
6) 原子力安全・保安院電力安全課:“電気設備の技術基準の解釈”,平成24年6月.
人体内部インピーダンスに及ぼす被験者のBMI及び腕の屈伸の影響

藤原 悠貴 a) ・北 尚平 b) ・林 則行 c) ・太良尾 浩生 d)

Influence of BMI and Arm Condition on the Internal Human Body Impedance

Yuki FUJIHARA, Shouhei KITA, Noriyuki HAYASHI, Hiroo TARAO

Abstract

In this study, we investigated the change of the internal impedance of the human body with respect to the BMI and the change of the human body impedance during the bending and stretching of the arm. In addition, comparison with the numerical analysis values using the human body detailed model. It was confirmed that the internal body impedance decreased with an increase in BMI. Even the calculated values using a double layer cylindrical model was able to confirm that a similar result was provided. Changes in the internal body impedance during the bending and stretching of the arm during were measured. It is thought that this is due to the fact that the reduction rate of resistance decreases depending on the circumference of the arm. Comparison with numerical analysis values using human body detailed model was conducted. The value of the internal body impedance became smaller than the actual measurement value. This is because the skin is not functioning in the human body detailed model.

Keywords: Electrical safety, Precise human model, Human body resistance, Contact current

1. はじめに

人体の英知の結晶とも言える電気が歴史的に登場し、我々がそれを生活に役立てるようになってから長い年月が経過した。現代社会では、電気の普及に伴うあらゆる技術が生み出され、便利で豊かな生活を送ることが可能となった。特に近年においては、太陽光発電システムや風力発電システムに代表される自家発電システムや、オール電化の家庭普及率が急激に伸びており、電気は我々の生活に密接に関わっている。しかしながら、世の中に電気が普及するのには社会的な要因も重要な役割を果たしている。特に、人体の内部インピーダンスは、電気の安全を保つために重要である。そこで我々は、人体内部インピーダンスの変化を調査することを目的としている。本研究では、BMIと人体内部インピーダンスの関係性を調査し、電気の安全のための保護手段を評価することを目的としている。具体的には、55 Hz, 100 kHzの周波数での人体内部インピーダンスの測定を行っている。本研究では、BMIと人体内部インピーダンスの間にはどのような関係があるか、また、腕の屈伸角度を変化させることで、人体インピーダンスはどう変化するのか調査を行った。同時に人体詳細モデルを用いた数値解析値と実測の比検比較を行った。

2. 実験

2.1 人体内部インピーダンス

IEC/TS60479-1に掲載されている人体インピーダンスの構成を図2.1に示す。人体インピーダンスは人体内インピーダンスZiと皮膚インピーダンスZs1, Zs2の2つの要素から構成される。人体内インピーダンスは、抵抗とキャパシタで構成されるが、低周波においてキャパシタは非常に小さく抵抗とみなされるため線形である。しかし、周波数が増加するとキャパシタの影響が大きく非線形となる。皮膚インピーダンスは人体内インピーダンス
内と同様に抵抗とキャパシタで構成される。皮膚インペラダンスは、皮膚の水分含有率や体温など様々な影響で変化するため非線形である。

![図2.1 人体インピーダンスの構成](image)

（Zs1, Zs2: 皮膚インピーダンス, Zi: 人体内部インピーダンス）

IEC/TS60479-1 に掲載されている皮膚インピーダンス値は、人体内部インピーダンス値よりも大きくかつ非線形であるため、正確な人体インピーダンス値を提供することが難しい。そのため、本研究で開発する人体内部インピーダンス測定装置では、人体インピーダンスの基本的な特性を把握するために皮膚インピーダンスを無視し、人体内部インピーダンスの測定を行う。皮膚インピーダンスを無視する測定方法として、我々は4端子法を用いている。

2.2 4端子法

LCRメーターなどで試料のインピーダンスを測定する場合、基本的な測定接続方法に2端子法と4端子法がある。そこで、4端子法の原理を2端子法と比較して説明を行う。2端子法と4端子法の基本回路を図2.2と図2.3に示す。なお、〜:測定信号源、V:電圧計、A:電流計、Z:人体内部インピーダンス、R1, R2:皮膚インピーダンスである。

図2.2の2端子法の場合、測定信号電流はZs1 → Zs2と流れ、電圧計Vで測定される電圧はZs1 + Zs2にかかる合計電圧となり、測定インピーダンスはZs1 + Zs2となる。すなわち、非線形である皮膚インピーダンスZs1とZs2が測定誤差となり、人体内部インピーダンスZを正確測定することができない。

図2.2 2端子法

図2.3の4端子法の場合、人体内部インピーダンスZに対しても電圧計Vの入力インピーダンスが十分に大きければ皮膚インピーダンスZs1とZs2にほとんど電流が流れない。そのため、測定電流はすべて人体内部インピーダンスZに流れ、電圧計Vで測定される電圧は正確に人体内部インピーダンスZの両端電圧となる。したがって、皮膚インピーダンスZs1 - Zs2の影響を無視して人体内部インピーダンスZを測定できる。

以上のような原理により、皮膚インピーダンスを無視でき人体内部インピーダンスの測定ができる。

図2.3 4端子法

（Zs1〜Zs4: 皮膚インピーダンス）

2.3 人体内部インピーダンス測定装置

測定装置の概要を図2.4に示す。本装置は、通電電流Iaを測定する電流計、低周波から中間周波数に渡って入力に加えられた電圧を10 μA/Vの比で電流に変換するV/Iコンバータと通電電流を制限する機能を持った定電流源装置、定電流源装置に電圧を印加する信号発生機、出力電圧を100倍に増幅する低雑音プリアンプ、定電流源装置から出される電流波形及び人体にかかる電圧波形を観測するオシロスコープで構成されている。なお、定電流源からの出力電圧及び出力電流は同位相である。

本研究の人体内部インピーダンス測定の原理は人体への微弱な電流Iaを流し、電極対間の電圧Vmを測定することで、接触電流値と、かかる電圧から通電経路に対する人体内部インピーダンスZ = Vm / Iaを算出するというものである。なお、測定周波数は55 Hz及び100 kHzとした。

図2.4 人体内部インピーダンス測定装置

2.4 測定姿勢

図2.5に本測定における基本姿勢を示す。腕を90°に曲げ、両手に握った棒電極間または左手に握った棒電極と左
足で踏んでいる平板電極間に 10 μA（55 Hz, 100kHz）の電流を流し、両手の甲または左手の甲に張った医療用ディスポ電極間の電圧を測定する。

図 2.5 測定姿勢（左：LH-RH 右：LH-LF）

3. 実験結果および考察

3.1 BMI に対する人体内部インピーダンスの変化

3.1.1 実験結果

電流経路を左手〜右手間（LH-RH）とし、両手の甲に医療用ディスポ電極を張り、腕を 90°曲げた姿勢において、両手間に 10 μA の電流を通電し、55 Hz 及び 100 kHz 時の人体内部インピーダンスを測定した。図 3.1 に BMI と人体内部インピーダンスの関係を示す。図の横軸が BMI、縦軸が人体内部インピーダンスとなっている。図 3.1 より、LH-RH の電流経路において、55 Hz、100 kHz の両周波数で BMI が増加すると人体内部インピーダンスは減少する傾向にあることがわかる。100 kHz 時の人体内部インピーダンスが 55 Hz 時の人体内部インピーダンスに比べ小さいのは、人体内部インピーダンスが抵抗とキャパシタで構成されているためであり、低周波では抵抗の影響が大きく、高周波ではキャパシタの影響が大きくなる。

3.1.2 簡易モデルを用いた考察

BMI が増加するにつれて人体内部インピーダンスが減少する要因について図 3.2 に示すような人体を円柱モデルで模擬したものを説明する。2 つの円柱モデル A と B は、人体の高さ H、中心部の円柱が脂肪を除いた組織、外側の円筒を脂肪組織とした二層構造の円柱モデルとなっている。中心部の円柱の半径はモデル A とモデル B で等しく、円筒部の厚みは異なる。

円柱モデルで上面と下面間の抵抗を考えると、除脂肪組織の抵抗値 \(R_1 \), モデル A の脂肪組織の抵抗値 \(R_{FA} \), モデル B の脂肪組織の抵抗値 \(R_{FB} \) は式 (1), (2), (3) で表される。

\[
R_I = \frac{1}{\sigma_I} \times \frac{H}{d_I} \quad (1)
\]

\[
R_{FA} = \frac{1}{\sigma_f} \times \frac{H}{D_f} \quad (2)
\]

\[
R_{FB} = \frac{1}{\sigma_f} \times \frac{H}{d_{Bf}} \quad (3)
\]

式中の \(\sigma \) は導電率、d は断面積、D は断面積を表し、添字 i, f はそれぞれ除脂肪組織と脂肪組織を表している。\(A \) はモデル A, \(B \) はモデル B の脂肪組織の断面積の比である。また、モデル A とモデル B は図 3.3 に示す回路に置き換えることができる。

式 (2), (3) により、

\[
\frac{R_{FA}}{R_I + R_{FA}} > \frac{R_{FB}}{R_I + R_{FB}} \quad (5)
\]

さらに、モデル A とモデル B の BMI の関係は式 (5) のように関係が成り立つ。

\[
BMI_A = \frac{(D_d + aD_{df})H}{H^2} < BMI_B = \frac{(D_d + aD_{df})H}{H^2} \quad (6)
\]

式 (5), (6) により、BMI の大きいモデル B の抵抗値は、BMI の小さいモデル A の抵抗値よりも小さくなることがわかる。よって実測における BMI と人体内部インピーダンスの関係は円柱モデルを用いた計算結果と同様の傾向にあることがわかる。

図 3.1 BMI に対する人体内部インピーダンスの変化

図 3.2 二層円柱人体モデル
3.2 腕の屈伸による人体内部インピーダンスの変化

3.2.1 実験結果

電流経路を左手－左足（LH-LF）間とし、腕を伸ばした状態を0°とした時から45°刻みで135°まで腕を曲げていった場合の人体内部インピーダンスの測定を行い数値解析値との比較を行った。

図3.4に腕の屈伸角度に対する人体内部抵抗の変化率を示す。横軸は腕の屈伸角度で縦軸は0°のときの人体内部インピーダンスで規格化した値を表している。実測値と計算値は共に腕を曲げる角度を大きくすると内部抵抗値は下がっていくという傾向がみられる。しかし、腕の屈伸角度135°において、実測と数値解析値との間に大きな差が見られる。

3.2.2 考察

以下、腕の屈伸角度135°で実測値と数値解析値が著しく異なる理由について考察する。図3.5に腕の屈伸角度0°、45°、90°、135°それぞれに対する人体詳細モデルの外観、図3.6に数値解析に用いられる人体詳細モデルで得られた左腕135°における電流ベクトル図を示す。図中の色の変化は導電率を表しており、電流を通しやすい筋肉組織が赤く、電気を通さない骨が青く表示されている。また腕曲げ時における皮膚と皮膚の接触箇所（赤枠）の拡大図も同時に示している。

皮膚同士の接触箇所の拡大図を見ると、電流が皮膚を貫通して流れているように見える。しかし、ベクトル線の数が少ないため本当に皮膚同士が接触する境界面で電流が貫通して流れているのかこの図だけでは判断できなかったため人体詳細モデルの皮膚に着目した。

図3.7は、左腕の屈伸角度135°時において、数値解析に用いる人体詳細モデルの屈曲した腕部の拡大図で、皮膚のボクセルのみを赤色で表示している。また皮膚同士の接触部分（黒枠）を拡大した図も同時に示した。拡大図をみると、皮膚同士が接触しているところに赤い線が2本見える。これは、矢印で示した線が三次元的に見えているためである。本来、皮膚が正常に存在しているならば図中の皮膚同士が接触する面も含めて赤く表示されるはずであるが、図3.7からはその様な状態は認められない。つまり、人体詳細モデルでは皮膚同士が接触する面では皮膚が無くなっており、この部分にも電流が流れていると考えられる。よって、腕の屈伸角度135°において数値解析の抵抗減少値が実測に比べて小さくなるのは、電流の流れる断面積が増加するためだと考えられる。

一方、実測で上記の数値解析結果と同じように皮膚同士の接触面を通じて電流が流れるかどうかの確認を行った。具体的には次の実験を行った。

①接触面の絶縁を確実にするため、接触面に絶縁物をはさみ、インピーダンスの変化を調査
②接触面の導通を促すために、接触面にアルミ箔を挟んだり、接触面に塩水を塗布したりして、インピーダンスの変化を調査
③接触面の皮膚を十分に湿潤状態にして、より接触面の導通を促した場合のインピーダンスの変化を調査

上記3つのケースいずれにおいても、実測値に変化は認められず、インピーダンスは接触面の影響を受けていないと結論できる。
二層円柱人体モデルの回路図

腕の屈伸による人体内部インピーダンスの変化
実験結果
電流経路を左手左足LH-LF間とし、腕を伸ばした状態を0°とした時から45°刻みで135°まで腕を曲げた場合の人体内部インピーダンスの測定を行い数値解析値との比較を行った。

図3.4に腕の屈伸角度に対する人体内部抵抗の変化率を示す。横軸は腕の屈伸角度で縦軸は0°のときの人体内部インピーダンスで規格化した値を表している。実測値と計算値は共に腕を曲げる角度を大きくすると内部抵抗値は下がっていくという傾向がみられる。しかし、腕の屈伸角度135°において、実測と数値解析値との間には大きな差が見られる。

考察
以下、腕の屈伸角度135°で実測値と数値解析値が著しく異なる理由について考察する。図3.5に腕の屈伸角度0°、45°、90°、135°それぞれに対する人体詳細モデルの外観、図3.6に数値解析に用いられる人体詳細モデルで得られた左腕135°における電流ベクトル図を示す。図中の色の変化は導電率を表しており、電流を通しやすい筋肉組織が赤く、電気を通さない骨が青く表示されている。また腕曲げ時における皮膚と皮膚の接触箇所赤枠の拡大図も同時に示している。

皮膚同士の接触箇所の拡大図を見ると、電流が皮膚を貫通して流れているように見える。しかし、ベクトル線の数が少ないため本当に皮膚同士の接触する境界面で電流が貫通して流れているのかこの図だけでは判断できないため人体詳細モデルの皮膚に着目した。

図3.7は、左腕の屈伸角度135°時において、数値解析に用いる人体詳細モデルの屈曲した腕部の拡大図で、皮膚のボクセルのみを赤色で表している。また皮膚同士の接触部分黒枠を拡大した図も同時に示した。拡大図をみると、皮膚同士が接触しているところに赤い線が本見える。これは、矢印で示した線が三次元的に見えるためである。本来、皮膚が正常に存在しているならば図中の皮膚同士が接触する面も含めて赤く表示されるはずであるが、図3.7からはその様な状態は認められない。つまり、人体詳細モデルでは皮膚同士が接触する面では皮膚が無くなっており、この部分にも電流が流れていると考えられる。よって、腕の屈伸角度135°において数値解析の抵抗減少率が実測に比べて小さくなるのは、電流の流れる断面積が増加するためだと考えられる。

一方、実測で上述の数値解析結果と同じように皮膚同士の接触面を通して電流が流れるかどうかの確認を行った。具体的には次のような実験を行った。
①接触面の絶縁を確実にするため、接触面に絶縁物をはさみ、インピーダンスの変化を調査
②接触面の導通を促すため、接触面にアルミ泊を挟んだり、接触面に塩水を塗布したりして、インピーダンスの変化を調査
③接触面の皮膚を十分に湿潤状態にして、より接触面の導通を促した場合のインピーダンスの変化を調査
上記3つのケースいずれにおいても、実測値に変化は認められず、インピーダンスは接触面の影響を受けていないと結論できる。

まとめ
周波数55Hz及び100kHzにおいてBMIに対する人体内部インピーダンスの測定を行った結果、BMIが増加すると人体内部インピーダンスは減少する傾向にあることが確認できた。二層円柱人体モデルを用いて計算した結果、BMIの大きなモデルの方がBMIの小さなモデルよりも抵抗値は小さくなるという結果が得られたことから、BMIが大きい人ほど人体内部インピーダンスは小さくなるという実測の結果と同様の傾向を示していることが分かった。

4. まとめ
周波数55Hz及び100kHzにおいてBMIに対する人体内部インピーダンスの測定を行った結果、BMIが増加すると人体内部インピーダンスは減少する傾向にあることが確認できた。二層円柱人体モデルを用いて計算した結果、BMIの大きなモデルの方がBMIの小さなモデルよりも抵抗値は小さくなるという結果が得られたことから、BMIが大きい人ほど人体内部インピーダンスは小さくなるという実測の結果と同様の傾向を示していることが分かった。

腕の屈伸による人体内部インピーダンスの変化に関して、実測と人体詳細モデルを用いた数値解析との比較を行った結果、腕の屈伸角度135°において抵抗の変化率を比較すると、実測値と解析値との間に大きなズレがみられた。実測では被験者の腕の皮膚を電流が貫通して流れていなかった確認を行ったが各条件でも電流は皮膚インピーダンスを無視して電流は流れていることが確認できた。一方数値解析では、腕曲げ時において人体詳細モデルの皮膚は皮膚同士の接触面において無くなっている。この部分において電流が流れていることから、電流の流れる断面積が実測よりも大きいため、抵抗の変化率に差が生じるという結論に至った。

参考文献
1) 経済産業省ホームページ http://www.meti.go.jp/.
4) ICNIRP, “Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz -100 kHz).” Health physics 2010; 99:818-836.
Numerical Examination on Radio Wave Propagation Loss by Human Body in Two-Dimensional Room Model

Yuya NAGAKAWA, Mitsuhiro YOKOTA

Abstract

In cellular mobile communications, the number of customers who use cellular phones indoors is rapidly increasing. Many examinations have been reported about the outdoor propagation loss characteristic, and the propagation model and the presuming method are standardized. On the other hand, although the presumed type based on an experiment has been proposed about the propagation loss characteristic, examination of the physical model which can take into consideration the size of a passage and the number of passersby (passerby density) in detail is carried out. So far, the propagation loss properties for one or two persons from the experimental and numerical points of view have been studied in our laboratory. In this study, the shadowing attenuation when people exist between the transmitter and receiver are calculated numerically. In this thesis, the two dimensional indoor model is built and the wave propagation for the specific condition such as the position of Tx and Rx is calculated by using the FDTD method. The electric field distribution in indoor is examined for various kinds of condition.

Keywords: Numerical techniques, FDTD method, Propagation loss, Indoor communication, Mobile communication terminal

1.はじめに

我々が使用する身近な無線通信設備の一つに携帯電話がある。インターネット接続デバイスは世界の人口よりも多く、日本の総務省が発表する携帯電話の年度別人口普及率は平成27年の普及率107.1％である1)。スマートフォン、タブレット等の場合は静止環境下や歩行程度の低速移動環境下での通信が多く、このような環境下では自ら走行する場合とは異なり、周囲の環境変化による伝搬変動を受ける。端末が静止し、その周辺環境が変化する場合の伝搬モデルとして、これまでの屋内環境下で使用する無線LAN(WLAN)を対象としたチャネルモデルがある2)-5)。このモデルは特定の屋内環境下での測定結果に基づいて作成されたモデルであり、人の数や歩行速度など周囲の環境変化を与えるパラメータを直接考慮できる物理モデルではない。そこで屋内環境下で端末が静止している場合に、周囲の環境変化を与えるパラメータとして人体を直接考慮できる新たな伝搬モデルが提案されている6)-9)。人体を損失円柱と仮定し、1人あるいは2人存在する場合の伝搬損失を電磁界理論に基づいて数値解析を行

a)電気電子工学専攻大学院生
b)電気システム工学科教授
壁の材質をコンクリートとして壁の比誘電率 \(\varepsilon_r = 5.0 \)、
壁の導電率 \(\sigma = 0.02 \text{ S/m} \) とし、壁の厚さを 0.2 m、大きい
方の部屋を 17 \(\times \) 8.5 m、小さい方の部屋を 13 \(\times \) 8.5 m と設
定した。入射波は円筒波を用いており、波源は赤点 (975、
3618)、青点 (3300、4254)、緑点 (1500、1404)、黄点 (3950、
2040) の 4 つの位置に配置し、周波数を 3.35 GHz に設定
した。人体を設置する場合の円のパラメータは、比誘電率
\(\varepsilon_r = 50 \)、導電率 \(\sigma = 0.02 \text{ S/m} \)、円直径 \(w = 0.35 \text{ m} \) に設定した。
この屋内モデルを基本屋内モデルとし、壁全体の導電率
を変化させた場合の屋内電波伝搬の様子についての解析
を行う。また人体を配置した場合についても解析を行う。
この屋内モデルを基本屋内モデルとし、壁全体の導電率を
変化させた場合の屋内電波伝搬の様子についての解析を
行う。また受信電力は全電界から求められ、次式で計算し
ている。

\[
20 \log_{10} |E_z|
\]

図 1. 実験装置の概要

2.2 壁全体の導電率 \(\sigma \) を変化させた場合（人体設
置なし）

図 2 に壁全体の導電率 \(\sigma \) を 0.02 〜 0.2 まで 0.02 刻みで
変化させた場合についての受信電力分布を示す。図 3、図
4 に大部屋と小部屋のそれぞれの平均受信電力のグラフ
を示す。図 2 をみると、導電率が高くなると部屋内部の
明るさは変化していないが廊下と壁の外側は暗くなってい
ることがわかる。また廊下では回折、反射の影響がより強
く観察できる。これは壁の透過量が減少して部屋内の反射
の影響が強くなったため、扉からの波源の影響だけが廊下
で強く観察できたと考えられる。次に部屋の平均受信電力
について図 3、図 4 をみると大部屋、小部屋どちらも壁の
導電率が 0.06 のときに平均受信電力が最も低いことが
わかる。これは導電率が 0.06 を境に壁の透過量と反射量
の影響の強さが変わっているためと考えられる。導電率が
低いときは壁の透過量が多いことから隅の部屋の波源の
影響も受けていたが、導電率が上がるにつれて壁の反射
量が多くなり廊下への透過量が減少し、部屋に設置して
ある波源はその部屋内に強い影響を及ぼすため、このよう
な結果になったと考えられる。また受信電力の上がり幅の
違いについては部屋の大きさが関係しており、部屋が小さ
いほうが反射の影響が強く、導電率の変化によっての影響
を受けやすいと考えられる。

図 2 受信電力分布図
壁の材質をコンクリートとして壁の比誘電率 ε₀ = 5.0、壁の導電率 σ = 0.02 S/m とし、壁の厚さを 0.2 m、大きい方の部屋を 17 × 8.5 m、小さい方の部屋を 13 × 8.5 m と設定した。入射波は円筒波を用いており、波源は赤点 (975, 3618)、青点 (3300, 4254)、緑点 (1500, 1404)、黄点 (3950, 2040) の 4 つの位置に配置し、周波数を 3.35 GHz に設定した。人体を設置する場合の円のパラメータは、比誘電率 ε₀ = 50、導電率 σ = 0.02 S/m、円直径 w = 0.35 m に設定した。

この屋内モデルを基本屋内モデルとし、壁全体の導電率を変化させた場合の屋内電波伝搬の様子についての解析を行う。また人体を配置した場合についても解析を行う。

解析モデルの人体の設置位置については、着席位置を想定した配置にしている。図 5 の (a) ～ (j) に壁全体の導電率 σ が 0.02 ～ 0.2 まで 0.02 刻みで変化させた場合についての受信電力分布を示す。表 2 と図 6、図 7 に大部屋と小部屋のそれぞれの平均受信電力の値とそのグラフを示す。図 5 (a) ～ (j) をみると、導電率が高くなるにつれて人体を配置していないモデルと同様に、部屋内部の明るさは変化してないが、廊下と壁の外側は暗くなっていている。また人体による反射、回折の影響が多くの部分で起こるため複雑な分布になっているが、波源から直接波が通る人体間では高い受信電力を観察できる。次に部屋の平均受信電力について表 2、図 5、図 6 をみると大部屋、小部屋どちらも壁の導電率が 0.06 のときに平均受信電力が低いことがわかる。受信電力の上がり幅の違いについて人体配置なしのモデルと比較すると差が大きいが、これは人体を設置しているため反射、回折の影響をより多く受けるようになったためと考えられる。

<table>
<thead>
<tr>
<th>壁の導電率 σ (S/m)</th>
<th>平均受信電力 (大部屋)</th>
<th>平均受信電力 (小部屋)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-31.77</td>
<td>-31.30</td>
</tr>
<tr>
<td>0.03</td>
<td>-31.86</td>
<td>-31.41</td>
</tr>
<tr>
<td>0.04</td>
<td>-31.89</td>
<td>-31.46</td>
</tr>
<tr>
<td>0.06</td>
<td>-31.90</td>
<td>-31.47</td>
</tr>
<tr>
<td>0.08</td>
<td>-31.89</td>
<td>-31.46</td>
</tr>
<tr>
<td>0.10</td>
<td>-31.87</td>
<td>-31.43</td>
</tr>
<tr>
<td>0.12</td>
<td>-31.84</td>
<td>-31.39</td>
</tr>
<tr>
<td>0.14</td>
<td>-31.81</td>
<td>-31.35</td>
</tr>
<tr>
<td>0.16</td>
<td>-31.78</td>
<td>-31.31</td>
</tr>
<tr>
<td>0.18</td>
<td>-31.73</td>
<td>-31.26</td>
</tr>
<tr>
<td>0.20</td>
<td>-31.71</td>
<td>-31.21</td>
</tr>
</tbody>
</table>

図 3 平均受信電力(大部屋)
図 4 平均受信電力(小部屋)
図 5 受信電力分布図
表2 平均受信電力

<table>
<thead>
<tr>
<th>壁の導電率(s/m)</th>
<th>平均受信電力(大部屋)</th>
<th>平均受信電力(小部屋)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-37.97</td>
<td>-36.69</td>
</tr>
<tr>
<td>0.03</td>
<td>-38.11</td>
<td>-36.81</td>
</tr>
<tr>
<td>0.04</td>
<td>-38.16</td>
<td>-36.86</td>
</tr>
<tr>
<td>0.06</td>
<td>-38.18</td>
<td>-36.87</td>
</tr>
<tr>
<td>0.08</td>
<td>-38.17</td>
<td>-36.83</td>
</tr>
<tr>
<td>0.10</td>
<td>-38.15</td>
<td>-36.81</td>
</tr>
<tr>
<td>0.12</td>
<td>-38.12</td>
<td>-36.76</td>
</tr>
<tr>
<td>0.14</td>
<td>-38.08</td>
<td>-36.71</td>
</tr>
<tr>
<td>0.16</td>
<td>-38.05</td>
<td>-36.66</td>
</tr>
<tr>
<td>0.18</td>
<td>-38.01</td>
<td>-36.60</td>
</tr>
<tr>
<td>0.20</td>
<td>-37.97</td>
<td>-36.54</td>
</tr>
</tbody>
</table>

図6 平均受信電力(大部屋)

図7 平均受信電力(小部屋)

図8 受信電力分布図

2.4 波源による影響

本節では屋内モデルに設置された4つの波源のそれぞれの影響について考察する。図8の(a)〜(d)にそれぞれの波源による受信電力分布を示す。また波源の影響を観察しやすいように壁の導電率は0.2に設定した。表3、表4に波源を設置している部屋の平均受信電力を示す。図より波源を1つ設置した場合に見られる回折、反射の影響は、4つ設置した分布にも観察することができる。また廊下や隣の部屋にも影響していることがわかる。表3、表4より、部屋ごとに受信電力を比較すると、部屋に波源が1つの場合に比べ、基本モデルのような部屋に波源が2つの場合は受信電力が大きくなっており、その差は約3dBである。
3. まとめ

本研究では、屋内環境変化における電波伝搬についてFDTD法を用いて2つのモデルの解析を行った。

簡易な屋内モデルでは、波源位置、人体の配置、壁の導電率を変更した際の影響を確認した。波源位置を変更した場合については、部屋内部に侵入する直接波の量が部屋の平均受信電力に影響していることがわかった。幾何光学的観点からの説明が可能であった。人体の配置を変化させた場合には、人体による透過、反射の影響を確認することができ、受信電力損失は大きくなることがわかった。壁の導電率を変化させた場合では、壁の透過、反射の影響も変化と平均受信電力の変化を確認することができた。

実際のフロアを想定した屋内モデルでは、人体を設置していない場合と設置した場合について、壁の導電率を変化させた影響と波源の影響を確認した。人体設置ありなしに関わらず壁の導電率が0.06の場合が最も部屋の平均受信電力が低いことがわかった。その値を境に壁の透過量と反射量が影響を及ぼすことが分かった。導電率の変化による平均受信電力の影響は、大部屋よりも小部屋の方が大きかった。また人体を設置すると部屋内部の受信電力分布は複雑になり、回折や反射が多様に起こっている影響を確認することができた。波源による影響では、部屋に波源を2つ設置することによって、1つ設置した場合に比べ、平均受信電力が約3dB大きくなった。

今後の課題については、送信アンテナの周波数変化、実モデルに近づけるために家具や窓の設置、2つ以上の波源による影響の検討等が挙げられる。

参考文献

1) http://www.soumu.go.jp/soutsu/tokai/tool/tokeisiryo/idoutai%n26betu.html
5) 水谷，阪口，高田，荒木 “時変動屋内 MIMO 伝送路のドップラースペクトル解析”，信学総大，B-1-14, 2006.
3次元人体モデルによる
電波遮蔽特性の数値的検討

榊原 昌太 1) ・ 横田 光広 2)

Numerical Examination of Radio Wave Shadowing Properties for Three-Dimensional Modeling of Human Body

Shota SAKAKIBARA, Mitsuhiro YOKOTA

Abstract

In cellular mobile communications, the number of customers who use cellular phones indoors is rapidly increasing. Many examinations have been reported about the outdoor propagation loss characteristic, and the propagation model and the presuming method are standardized. On the other hand, although the presumed type based on an experiment has been proposed about the propagation loss characteristic, the examination of the physical model which can take into consideration the size of a passage and the number of passersby (passerby density) in detail is carried out.

In this study, the three-dimensional human body is considered and the shadowing property is examined by the FDTD method numerically. The received power for various height of the transmitter is calculated at various observation plane and the effect of the propagation loss is considered.

Keywords: Numerical techniques, FDTD method, Propagation loss, Mobile communication terminal

1. まえがき

近年、電子・通信・情報技術は著しく発展し、半導体を中心とする材料・デバイス分野、光ファイバー、衛星通信などといった伝送およびネットワーク技術、コンピュータを中心とした情報処理技術の進歩が目覚しいものがある 1)。計算機の進歩により情報処理技術の性能が高まってきているため、シミュレーションによる電磁波の解析が簡単になり莫大な手間と時間が掛かる実験に取って代わるシミュレーション技術が重要視されている 2)。一方、移動通信はスマートフォン、タブレット端末、無線 LAN を使用したノート型パソコン等の通信機器の急速な普及により屋内での様々な環境下での通信が増加している。また、屋内環境下で使用が停止している場合に、周囲の環境変化を与えるパラメータとして運動体である人体を考慮できる新たな伝搬モデルが提案され 3)、実験的な検証が行われている 4)。前述のシミュレーションでは、2次元モデルが用いられる。近年、計算機の進歩により3次元モデルによるシミュレーションも可能となっており、実用的には重要である。3次元モデルを用いることにより、2次元モデルで検討されてきた送信場面人体が存在する場合の伝搬損失特性に加えて、基地局アンテナ高を考慮することことができ、送信局の高さを考慮した伝搬損失特性を検討することができる。

本論文では、3次元人体モデルによる電波遮蔽特性について、FDTD 法 5) 6) を用いて数値的に検討する。3次元人体モデルとして、円柱、円柱+球、回転楕円体、回転楕円 + 球が自由空間にある場合の4種類と、この4種類のモデルに床モデルを設置した場合の計合計8種類を取り扱う。それぞれのモデルに対して、送信アンテナと受信面の高さを変える場合の受信電力を比較して検討している。また、3次元人体モデルを円柱として、複数人体による伝搬損失特性の数値的検討を行う。2.0[m]×4.0[m]×2.68[m] の領域内に人体8人をランダムに配置し、100 回試行した結果の平均を求め、2次元モデルの結果との
比較を行う。なお、吸収境界条件として Mur の 2 次吸収境界条件を適用し、送信アンテナは、微小ダイポールアンテナを使用している。

2. 3 次元人体モデルを用いた電波遮蔽特性の検討

2.1 問題設定

図 1-8 に解析モデルを示す。3 次元人体モデルを、円柱、円柱 + 球、回転楕円体、回転円体 + 球とした場合の 4 つのモデルと、それぞれに床をモデル化した 4 つのモデルの合計 8 つのモデルについて比較、検討を行う。解析領域は、1 辺が 2.68[m] の立方体とし、波長 \(\lambda = 8.95 \times 10^{-2}[\text{m}] \)、セルサイズ \(\Delta x = \Delta y = \Delta z = 4.0 \times 10^{-3}[\text{m}] \) としている。また、人体モデルのパラメータとして、比誘電率 \(\varepsilon_r = 50.0 \)、導電率 \(\sigma = 2.0[\text{S/m}] \)、人体モデルの直径 0.35[m]、人体モデルの高さ 1.6[m]、球の直径 0.26[m] とし、床のパラメータとして、比誘電率 \(\varepsilon_r = 50.0 \)、導電率 \(\sigma = 0.2[\text{S/m}] \) としている。図 9 に示すように、3 次元人体モデルの中心の位置を \(0[\text{m}] \) とし、この位置から送信アンテナの高さを \(0[\text{m}] \)、0.8[m]、1.0[m]、−0.4[m] とし、受信面を人体の後方 1.0[m] とし、高さを \(0[\text{m}] \)、0.2[m]、0.6[m]、−0.6[m] としてそれぞれシミュレーションを行った。

図 1: 円柱モデル 図 2: 円柱+床モデル
図 3: 円柱+球モデル 図 4: 円柱+球+床モデル
図 5: 回転円体モデル 図 6: 回転円体+床モデル
図 7: 回転円体+球モデル 図 8: 回転円体+球+床モデル
図 9: 送信アンテナ高と受信面の高さの関係

2.2 送信アンテナ高が \(0[\text{m}] \) の場合

送信アンテナ高が \(0[\text{m}] \) のとき、図 1-8 の各モデルの平均受信電力を図 10 に示し、その各モデルの平受信電力を表 1 に示す。受信電力の計算には、式 (1) を用いている。1451, 1500 はタイムステップ数であり、タイムステップ数 50 は本研究で用いた波長 3.35[GHz] の 1 周期分のタイムステップ数にあたる。また、平均受信電力の計算には、式 (2) を用いている。2,669 は y 軸方向のセル数、335 は z 軸のセル数にあたり、式 (2) は、受信面高が \(0[\text{m}] \) のときの値となっており、受信面高が 0.2, 0.6, −0.6[m] のときには、それぞれ
検討を行う。解析領域は一辺が8[m]とし、この位置から送信アンテナの高さを0[m]としてそれぞれシミュレーションを行った。

比較を行う。なお、吸収境界条件として、送信アンテナ高が0[m]の場合の電率εを50としている。また、人体モデルのパラメータとして、比誘電率σを35としている。図3に解析モデルを示す。図3次元人体モデルを用いた電波遮蔽特性を図4に示す。回転楕円体モデルと円柱モデルの受信電力を図5に示す。回転楕円体モデルでは、約6.69[dB]、円柱モデルでは、約4.64[dB]、回転楕円体+床モデルでは、約5.06[dB]、回転楕円体+床+球のモデルでは、約5.13[dB]、回転楕円体+球のモデルでは、約5.10[dB]、円柱+球のモデルでは、約4.64[dB]、回転楕円体+床モデルの受信面高が0[m]の場合に一番床からの反射の影響を確認できたと考えられる。その影響は、床の有無により平均受信電力が円柱のモデルでは、約4.68[dB]、円柱+球のモデルでは、約4.64[dB]、回転楕円体のモデルでは、約5.13[dB]、回転楕円体+球のモデルでは、約5.10[dB]、回転楕円体+床モデルの受信面高が0[m]のときの値となっていることが確認できる。ここでは、円柱と回転楕円体のモデルの違いによる差はほとんど見られなかった。

表1: 各モデルの平均受信電力

<table>
<thead>
<tr>
<th>モデル</th>
<th>受信面高</th>
<th>0[m]</th>
<th>0.2[m]</th>
<th>0.6[m]</th>
<th>-0.6[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>円柱</td>
<td>-92.89</td>
<td>-93.00</td>
<td>-93.45</td>
<td>-93.66</td>
<td></td>
</tr>
<tr>
<td>円柱+球</td>
<td>-92.82</td>
<td>-92.79</td>
<td>-94.03</td>
<td>-93.51</td>
<td></td>
</tr>
<tr>
<td>円柱+床</td>
<td>-92.06</td>
<td>-91.75</td>
<td>-93.61</td>
<td>-88.98</td>
<td></td>
</tr>
<tr>
<td>円柱+球+床</td>
<td>-92.34</td>
<td>-91.54</td>
<td>-94.17</td>
<td>-88.87</td>
<td></td>
</tr>
<tr>
<td>回転楕円体</td>
<td>-92.88</td>
<td>-92.88</td>
<td>-92.93</td>
<td>-92.93</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+球</td>
<td>-92.69</td>
<td>-92.19</td>
<td>-91.36</td>
<td>-88.87</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+床</td>
<td>-91.05</td>
<td>-89.87</td>
<td>-92.99</td>
<td>-88.80</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+球+床</td>
<td>-91.38</td>
<td>-89.79</td>
<td>-91.56</td>
<td>-88.08</td>
<td></td>
</tr>
</tbody>
</table>

2.3 送信アンテナ高が0.8[m]の場合

送信アンテナ高が0.8[m]のとき、図1-図8の受信電力を図11に示し、その各モデルの平均受信電力を表2に示す。送信アンテナ高が0.8[m]の場合では、2.2でも述べたが、床からの反射の影響はあまり
見られなかった。ここでは、円柱と回転楕円体の違いに着目して、平均受信電力を見ると、受信面高が 0.2[m] の場合に、ほかの受信面高と比べると大きな差が見られ、円柱＋球のモデルに対して、回転楕円体＋球のモデルのときに約 1.96[dB] 高くなっていることがわかる。これは、図 12 に示すように、受信面高が 0.2[m] のときに、回転楕円体＋球のモデルでは、円柱＋球のモデルに対して、人体でいう首の部分が細くなっているため、直接波が受信面まで届きやすくなっているためと考えられる。これは床を追加したモデルでも同様の現象を確認することができる。

2.4 送信アンテナ高が 1.0[m] の場合

送信アンテナ高が 1.0[m] のとき、図 1-図 8 の受信電力を図 13 に示し、その各モデルの平均受信電力を表 3 に示す。送信アンテナ高が 1.0[m] と人体よりも高い位置に設定されているため、送信アンテ
ナ高が 0[m] や −0.4[m] で確認できた床からの反射の影響を確認することができなかった。また、受信面高 −0.6[m] の場合は、送信アンテナとの距離が 1.6[m] と一番遠くなる組み合わせとなっており、平均受信電力が低くなっていることが確認できる。また、円柱と回転楕円体のモデルによる違いは、回転楕円体+球のモデルと円柱+球のモデルで差が見られる。ここでは、送信アンテナ高が高くなっているため、図 14 に示したように、受信面高が 0[m] のときに直接波が受信面まで届きやすくなっているため、平均受信電力が约 1.70[dB] 回転楕円体+球のモデルのほうが高くなっている。

図 13: 送信アンテナが 1.0[m] の場合

表 3: 各モデルの平均受信電力

<table>
<thead>
<tr>
<th>受信面高</th>
<th>0.2[m]</th>
<th>0.4[m]</th>
<th>0.6[m]</th>
<th>-0.6[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>円柱</td>
<td>-92.44</td>
<td>-93.06</td>
<td>-90.59</td>
<td>-96.35</td>
</tr>
<tr>
<td>円柱+球</td>
<td>-92.83</td>
<td>-91.83</td>
<td>-89.87</td>
<td>-96.44</td>
</tr>
<tr>
<td>円柱+床</td>
<td>-92.44</td>
<td>-93.06</td>
<td>-90.59</td>
<td>-95.51</td>
</tr>
<tr>
<td>円柱+球+床</td>
<td>-92.83</td>
<td>-91.83</td>
<td>-89.87</td>
<td>-96.27</td>
</tr>
<tr>
<td>回転楕円体</td>
<td>-91.13</td>
<td>-91.60</td>
<td>-89.85</td>
<td>-94.92</td>
</tr>
<tr>
<td>回転楕円体+球</td>
<td>-92.54</td>
<td>-91.72</td>
<td>-89.44</td>
<td>-95.82</td>
</tr>
<tr>
<td>回転楕円体+床</td>
<td>-91.13</td>
<td>-91.60</td>
<td>-89.85</td>
<td>-94.92</td>
</tr>
<tr>
<td>回転楕円体+球+床</td>
<td>-91.07</td>
<td>-91.51</td>
<td>-89.77</td>
<td>-94.24</td>
</tr>
</tbody>
</table>

図 14: 送信アンテナ高と受信面高の関係

2.5 送信アンテナ高が -0.4[m] の場合

送信アンテナ高が -0.4[m] のとき、図 1-図 8 の受信電力を図 15 に示し、その各モデルの平均受信電
力を表4に示す。送信アンテナ高が−0.4[m]と床に近い位置に設定されているため、床からの反射の影響を確認することができるが、受信面高−0.6[m]の場合、送信アンテナと近いことで、床からの反射波のみではなく、アンテナからの直接波の影響もあり、送信アンテナ高が0[m]の場合と比較すると、床からの反射の影響が小さくなっていることがある。

図15: 送信アンテナが−0.4[m]の場合

表4: 各モデルの平均受信電力

<table>
<thead>
<tr>
<th>モデル</th>
<th>受信面高</th>
<th>0[m]</th>
<th>0.2[m]</th>
<th>0.6[m]</th>
<th>-0.6[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>円柱</td>
<td>-92.97</td>
<td>-93.44</td>
<td>-94.52</td>
<td>-92.30</td>
<td></td>
</tr>
<tr>
<td>円柱+球</td>
<td>-92.88</td>
<td>-93.24</td>
<td>-94.12</td>
<td>-92.37</td>
<td></td>
</tr>
<tr>
<td>円柱+床</td>
<td>-94.81</td>
<td>-93.70</td>
<td>-97.09</td>
<td>-92.73</td>
<td></td>
</tr>
<tr>
<td>円柱+球+床</td>
<td>-94.86</td>
<td>-93.63</td>
<td>-96.56</td>
<td>-92.80</td>
<td></td>
</tr>
<tr>
<td>回転楕円体</td>
<td>-92.87</td>
<td>-93.44</td>
<td>-94.38</td>
<td>-91.33</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+球</td>
<td>-93.03</td>
<td>-93.56</td>
<td>-93.79</td>
<td>-91.63</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+床</td>
<td>-92.72</td>
<td>-91.77</td>
<td>-97.21</td>
<td>-89.29</td>
<td></td>
</tr>
<tr>
<td>回転楕円体+球+床</td>
<td>-92.77</td>
<td>-91.98</td>
<td>-95.86</td>
<td>-89.40</td>
<td></td>
</tr>
</tbody>
</table>

3. 複数の3次元人体モデルを用いた電波遮蔽特性の検討

図16: 解析モデル: 円柱をランダムに配置

図16に解析領域に複数の人体モデルを置いた場合について示す。3次元人体モデルを円柱とし、8人の人体モデルをランダムに配置し、100回試行し、2次元の結果と比較、検討を行う。解析領域は、2.0[m]×4.0[m]×2.68[m]の直方体とし、周波数、波長、セルサイズ、人体モデルのパラメータ等は同様の設定となっている。また、受信面は送信アンテナから
4[m]の位置とし、高さは人体の中心の高さ（図9における0[m]）としている。

図16のモデルにおいて、100回試行し、その結果を平均した計算結果と、2次元モデルで150回試行し、その結果を平均した計算結果を図17に示し、各モデルの平均受信電力を表5に示す。2次元モデルの2[m]×4[m]の結果が、3次元のモデルと同様の設定となっており、本論文では、この結果との比較、検討を行う。ここでは、2次元の結果を合わせるために、式(3)を用いて受信電力を計算している。また、平均受信電力の計算には、式(2)を用いている。

\[20 \log_{10}(|E_i + E_s|/E_i) \quad (3) \]

3次元と2次元モデルを比較すると、約17.13[dB]と大きな差があることがわかる。これは、3次元と2次元の照射波の違いによるものであると考えられる。3次元モデルでは、微小ダイポールアンテナを入射波としている。この特性を図18に示す。また2次元モデルでは、円筒波を入射波としている。これら入射波の照射面積の違いが約17.13[dB]という大きな差が生じた原因ではないかと考えられる。

また、3次元モデルの受信電力分布の図17(a)を見ると、中央で山のように規格化受信電力が高くなっていることがわかる。このことから、ランダムの配置に偏りが発生しているのではないかと考えられる。3次元モデルでは、2次元モデルと比較すると、z軸方向の領域が増えることにより、必要なメモリが増え、計算時間が長くなってしまう。そのため、2次元モデルよりも試行回数を50回少なくなっている。これが、配置の偏りを生じさせたのではないかと考えられる。

4. まとめ

本論文では、3次元人体モデルの違いやアンテナの高さを変えた場合、また複数的人体モデルを用いた場合の遮蔽特性についてFDTD法を用いて数值的に検討を行った。図16を示すように、受信アンテナ高を0[m]、または−0.4[m]の位置に設定し、床を配置した場合に、受信面が床付近の−0.6[m]で、受信電力が高くなる結果が観測された。モデルによる最大差で約5[dB]の差が観測された。これは、床からの反射により、受信電力が高くなったと考えられる。そのため、送信アンテナ高が0.8[m]の場合には、影響はほとんど見られなかった。また、人体モデルによる違いとしては、回転楕円体+球の場合、人体の首にあたる部分の見通しが増え、受信面に到達する直接波が増えることで、受信電力が高くなることが確認できた。従来の円柱のみのモデルと比較して、回転楕円体は一番太くなっている部分から上下に向けて細くなっていくことにより、全体的に受信電力が高くなる結果になったと考えられる。2次元モデルと3次元モデルの比較では、3次元モデルでは、z軸方向の検討が加わるため、同様の結果を得ることは難しい。
しいのではないかと考えられる。本論文では、入射波の違いにより受信電力に大きな差が観測された。また、3次元では領域が2次元に比べると明らかに大きく、大容量なメモリが必要であることや、それに伴い計算時間が長くなってしまうことにより試行回数を増やすことが困難である。そのため、ランダムに配置した場合には、偏りがあることが受信電力分布から確認することができる。

今後の課題としては、床のみではなく壁（コンクリート）を配置した場合や、床を地面（土）にした場合、人体モデルの数を変更した場合の遮蔽特性の検討や、実験を行いシミュレーション結果との比較検討を行う予定である。

参考文献

1) 後藤 尚久、新井宏之：“電波工学”，昭晃堂株式会社 (1992)
2) 安達 三郎：“電波伝送工学”，コロナ社 (1981)
3) 藤井、太田：“屋内・周辺環境下における伝搬変動モデルの提案（その1）”，信学技法，AP2006-55, 2006.07.
4) 太田、藤井：“人体による電波の遮蔽特性に関する実験的検討”，信学技法，AP2008-159, 2009.01.
5) 宇野 亨：“FDTD法による電磁界およびアンテナ解析”，コロナ社 (1998)
Scattering Problem of EM Wave by Cylindrical Object Using Multigrid-Moment Method

Tatsuaki MITSUIM · Soe Soe Khaingb · Mitsuhiko YOKOTAC

Abstract

Recently, in cellular mobile communications, the number of customers who use cellular phone indoors is rapidly increasing. Many examinations have been reported about the outdoor propagation loss characteristic, and the propagation model and the presuming method are standardized. On the other hand, although the presumed type based on an experiment has been proposed about the propagation loss characteristic, examination of the physical model which can take into consideration the size of a passage and number of passersby in detail is carried out and the performance of information processing technique is increasing by the progress of the computers which make easy the analysis of electromagnetic wave for simulation. In order to resolve the issues of the design of the electromagnetic devices, the development of excellent algorithms has been desired. The numerical technique to solve the EM problem such as FEM, Method of Moment, FDTD method and so on has been proposed. In this report, the multigrid-moment method is applied to the scattering problem of EM wave by cylindrical object in order to speed up CPU time.

Keywords: Multigrid Method, Method of Moment, Scattering problem

1. INTRODUCTION

Recently, the performance of information processing technique is increasing by the progress of the computers which make easy the analysis of electromagnetic wave for simulation1,2,3). In order to resolve the issues of the design of the electromagnetic devices, the development of excellent algorithms has been desired.

The Method of Moments (MoM)1 is one of the numerical technique, it used to convert integral equations into a linear system that can be solved numerically using a computer. The main of calculate is that an electric field integral equation convert a simultaneous equation in conductor surface and it calculate current distribution in conductor surface. In general, we have two kinds of method to calculate simultaneous linear equations. One of the direct method, for instance Gauss elimination method. The other is iterative method, for example Kaczmarz method. The calculation amount of first method is in proportion to N3. The calculation amount of secondly is in proportion to N2 per a step. Thes we use few iterative method in this research. But, if iterative method apply to problem, it is generally to decrease efficient error of same size of cell size and wavelength. In other words, error of long wavelength cannot decrease easily. We have to calculate fast so that we apply multigrid method to MoM. Multigrid method4,5,6,7) was known as a on the faster method. It use some mesh: coarse mesh and fine mesh. Error decrease efficient same size of mesh when want to decrease error elements of long wavelength, we should use coarse mesh. Due to this, multigrid method can decrease repeat count. To put it more simply, we can decrease calculation time. Therefore, it is confirmed the validity and usefulness of the multigrid method in this thesis. As examples, the propagation in free space and the scattering by a circular cylinder is applied.

2. Numerical Analysis Method

2.1 Method of Moment

The method of moment converts the integral equation to a numerically appropriate equation and solve the problem. When the target object is especially complex shape and non-linear equation, it has the possibility that it can not be solved. Therefore, obtained function is discretized and solved as simultaneous linear equation by converting to matrix representation. Analysis area is divided into a little cell such as Figure 1. In this time, analysis region is assigned to #1. In each cell, E_{z} and ε_{r} are constants.

![Fig. 1 Lossy dielectric object #1](image)

Fig. 1 Lossy dielectric object #1

Firstly, analysis area is divided into a little cell such as Figure 1 In this time, each analysis region is assigned to #1. E_{z} and ε_{r} are constants.

$E_{z}(r) = E_{n}(x_{n},y_{n})$

#1 : 1, 2, 3, ..., N1

a) Master Student, Dept. of Electrical and Electronic Engineering
b) Professor, Dept. of Information and Communication Technology, Univ. Tech YCC, Myanmar
c) Professor, Dept. of Electrical System Engineering
Following equation is obtained by performing an integral evaluation.

\[
E_m + j \frac{k_0^2}{4} \sum_{n=1}^{N} \varepsilon_r(n) \{ \varepsilon_r(n) - 1 \} \int_{\text{cell}} H_0^{(2)}(k_0 \rho) \, dx' \, dy' = E_m^i(r)(m = 1, 2, \cdots, N)
\]

\[
\rho = \sqrt{(x_m - x')^2 + (y_m - y')^2}
\]

where, \((x_m, y_m)\) is observation point, \((x', y')\) is variable of integration and \(E_m^i\) is incident electric field on observation point \((x_m, y_m)\). It is expressed matrix form,

\[
\sum_{n=1}^{N} C_{mn} E_n = E_m^i \quad (m = 1, 2, 3, \cdots, N)
\]

(1)

and coefficient matrix \(C_{mn}\) is integral part in \(C_{mn}\) can be approximated by the method of Richmond and also, Kronecker delta is defined this equation.

\[
C_{mn} = \delta_{mn} + j \frac{k_0^2}{4} \{ \varepsilon_r(n) - 1 \} \int_{\text{cell}} H_0^{(2)}(k_0 \rho) \, dx' \, dy' \]

(2)

\[
\delta_{mn} = \begin{cases}
1 & (m = n) \\
0 & (m \neq n)
\end{cases}
\]

2.2 Multigrid Method

Multigrid method is widely used for solving simultaneous linear equations using hierarchy of discretization. Due to reducing calculation time, it was used. The simultaneous linear equation calculated by using iterative method when it efficiency attenuated residual of the same size of grid size and wavelength. Therefore, multigrid method uses multigrid level grids so we cope with each kind of wavelength.

In multigrid method, it uses hierarchical grid \(G^\gamma\). Subscript \(\gamma\) shows the fineness of grid. In other word, if grid spacing of \(G^\gamma\) is \(h^\gamma, h^{\gamma-1} = 2h^\gamma\). We show sample pf 2-level multigrid method below.

2.2.1 Linearized Equations

1. Linearized equations \(A_F x_F = B\) relax on fine grid and the result
2. We calculate the residual \(r_F = B - A_F x_F^{(0)}\) on fine grid.
3. We interpolate the residual on the fine grid to on the coarse grid with restriction interpolation operator \(R_{F\rightarrow C}: r_C = R_{F\rightarrow C} r_F\)
4. Equation \(A_C x_C = r_C\) calculate on coarse grid.
5. Solution \(x_C\) on coarse grid is calculated correct value \(\Delta u^{(0)}_F = R_{C\rightarrow F} u_C\) by prolongation interpolation operator \(R_{C\rightarrow F}\)
6. Solution on the fine grid is updated by correct value:
\[
x_F^{(1)} = x_F^{(0)} + \Delta u^{(0)}_F
\]
7. We return this process until the residual under standard value.
\[
x_F^{(i+1)} = x_F^{(i)} + R_{C\rightarrow F} A_C^{-1} R_{F\rightarrow C}(B - A_F u_F^{(i)})
\]
3. Numerical Analysis Result

In this chapter, we compare and examine Method of Moment and Multigrid method.

3.1 Setting of numerical domain

We show analysis model on Fig. 5. In this time, we want to check scattering problem and effect of dielectric cylinder. Analysis domain has x-axis of 4.0[m] and y-axis of 2.0[m]. Frequency is $f = 3.35[\text{GHz}]$, wavelength is $\lambda = 8.95 \times 10^{-2} \text{[m]}$, cell size is $\Delta x = \Delta y = 7.29 \times 10^{-3} \text{[m]}$ and relative dielectric constant of cylinder is $\varepsilon_r = 50.0$, radius of cylinder is 0.175[m].

![Fig. 5 Analysis model](image)

3.2 Setting of dielectric cylinder

The Multigrid method is using multiple grids, so we divide cylinder some pattern. In this time, we show three pattern. Fig. 6 shows each pattern of the cylinder.

![Fig. 6 Each divide cylinder](image)

3.3 Comparison MoM and Multigrid method

Firstly, we showed the residual per repeat count and received power of observation plane. Fig. 7 (a)(b) shows relationship between repeat count or calculation time and residual.

![Fig. 7 The relationship between repeat count or calculation time and residual.](image)

In figure 7, we can see that method of moment reduce residual efficiency, but the reduction of the residual becomes slow over certain period of time. Fig. 8 is received power on observation plane.

![Fig. 8 Received power](image)

Then multigrid method uses multi level grid so we have to find best parameter and we change parameter of repeat count of each grid. Therefore, the effect of the number of the iteration on the residual is examined. Figure 9 shows the results. Figure-9(a) indicates the residual for 2times on fine grid, Fig. 9(b) for 3times on fine grid, Fig. 9(c) for 5times on fine grid and Fig. 9(d) for 8times on fine grid.
In the table1, it was found that in this case fine grid 3 times and coarse grid 30 times decreased the residual. In the next, we compare method of moment and best parameter of multigrid method. Fig. 10 shows relationship between calculation time and residual and also received power of observation plane.

As a result, MoM needs 980[s] and Multigrid method needs 337[s] so we reduce calculation time about 65[%] reach residual 10^{-2} in this model. And also relative error is 3.2[%]. However, in the case of multigrid method, the decrease in residuals tended to be delayed.

4.Conclusion

We numericaly studies were conducted in the case of using the method of moment, and in the calculation times at that time. The relation of the residuals and the received power on the observation surface were obtained. After that, comparison was made with the case using the multigrid method. In that case, the number of calculations in the dense lattice was fixed and the number of calculations in the coarse lattice was changed to 10, 20, 30.

As a result, it was shown that the attenuation of the residual becomes faster if the calculation number of the sparse lattice is increased in all cases, as can be seen from the figure, the tendency that the efficiency declines gradually can be confirmed. Therefore, the number of repetitions of the sparse lattice is fixed and the number of calculations of the dense lattice is changed. Moreover, in order to consider practicality, we compared the horizontal axis with calculation time and the vertical axis as residual difference. In that case, the residual converges the earliest in the case of the first part where the number of iterations is four, but as the final result it was confirmed that convergence was the fastest in the case of 3 iterations with the smallest number of iterations. This is considered to be because more calculation time is required when the number of repetitions on the dense lattice is increased since the calculation region is large on the dense lattice.

5.Reference

Trademark Image Retrieval using Angular Radial Histogram Approach on Object Region

Moe Zet Pwint(a), Mie Mie Tin(b), Mitsuhiro YOKOTA(c), Thi Thi Zin(c)

Abstract

Trademarks are valuable things for companies and organizations around the world. Trademarks can represent standard, quality, service and background image of the companies or the organization. Due to the increasing number of business companies and also trademarks, it is important to have a computerized system that can detect and extract the similarity of trademarks because a new trademark must be different from other registered trademarks. Content-BasedTrademark Retrieval (CBTR) can deal with matching and detection of similar and infringement trademarks. In this paper, we propose a region-based shape descriptor that combined Angular Radial Approach (ARA) and histogram of object region of trademark image. To confirm the proposed method, the retrieval results are shown according to the rank values and by using the popular dataset.

Keywords: Content-Based Trademark Retrieval, Information Retrieval, Shape descriptor, Angular Radial Approach

1. INTRODUCTION

Trademark registration is an important factor for business companies and organization around the world. A trademark can represent ‘symbol of quality’ and can distinguish which goods or services come from. All of the companies and organizations appreciate their trademarks because it is priceless for them. Due to the increased number of companies in business world, having a unique trademark for them is important matter.

A trademark is simply, that may be composed of text, graphic or may be a combination of both. Figure 1 shows the types of trademark. The important thing is that a new trademark must be distinct from other registered trademarks. Nowadays, the trend in TIR system tends to check not only for similarity measurement but also for detecting trademark infringement case1).

A lot of research have made many kinds of algorithms and applications that address to help Trademark Image Retrieval (TIR). All of the system goal is to have better retrieval performance.

Fig. 1. Real world trademarks of text, design and both types

A good TIR system has the ability of detecting similar trademarks and also infringement trademarks. Content-Based Image Retrieval (CBIR) also known as Query by Image Content2) (QBIC) trying to find an image according to image contents rather than metadata such as keywords or tags that are associated with the image. CBIR system mainly extract content features such as color, texture and shape. Each feature has their unique properties and combining these features can result in better performance. Figure 2 shows the architecture of CBIR system.

In our system, we concentrate only on the shape feature dealing with region based approach. Shape can give nature essence of image and therefore can capture image appearance. We propose a shape method that can be used in TIR system. The rest of the paper is organized as follows. In section 2, we review related works on TIR system and shape image retrieval. Section 3 provides methods and manner applied in our system. In section 4, experiment results are presented. Conclusion and discussion are presented in the section 5.

2. RELATED WORKS

Several research have addressed and improved on the trademarks retrieval. According to the advance of CBIR system, many have attempted to apply on the area of Content-Based Trademark Retrieval (CBTR).

Some researchers attempted by using Zernike moments for shape feature and introducing the technique of visual salient feature for CBTR system3). This approach was very promising and indicated the researchers who would like to apply and modify Zernike moments in later research.
3. PROPOSED METHOD

We propose a method by using Angular Radial Approach and horizontal and vertical histogram count of the object region in the image are employed. Figure 3 describes the proposed system architecture. First, the features are extracted from all images in the dataset, forming feature vectors and stored in a database. When an input query is applied, features are extracted from the query and then similarity measures between query image and all images in the dataset to be done. The result are shown to user according to the rank value.

3.1 Preprocessing

Before processing on images, it is important to make preprocessing step. Image preprocessing step is important for later operation such as feature extraction and matching. We experimented our system on MPEG-7 CE Shape-1 Part B dataset. The dataset contains 1400 shape silhouette images. It is divided into 70 classes and each class contains 20 images with similar structure. There are strong variations and some inconsistent within each class. This made difficult for every shape descriptor to have 100% accuracy.

The preprocessing step on the dataset is following: 1) Cropping the object region in image, and 2) Resizing the crop image into $n \times n$ equal size for having uniform structure on the dataset. When resizing image, some of the image are not fitted in $n \times n$ pixel range. This is because of width or height are not equal and some of size may be too large or small. For that kind of image, we padded with zero values for the require space and put the image in center position. Figure 4 show the preprocessing step.

To improve the TIR system, one of the important thing is to have the publicity available datasets for researchers. Some datasets are not publicity unavailable. So, providing a benchmark trademarks dataset and tested with existing approached that are focused on TIR retrieval system and showing that existing methods are not well performed on that dataset. Tested feature descriptors are color histogram, gradient orientation histogram, local binary pattern, shape context, SIFT and triangular SIFT. The experimental results are shown with precision-recall graph of each descriptors.
3.2 Feature extraction

The feature extraction stage is important and crucial that can impact retrieval performance of the system. In our proposed system, we extracted mainly two feature:

(i) Angular Radial histogram feature, and
(ii) Horizontal and vertical histogram of the image.

(i) Angular radial feature

In preprocessing step, we manage each image of size \(n \times n \). Let \((c_x, c_y) = (n/2, n/2)\) be the center point for image. First, we create a binary mask for each sector according with arbitrary radius. In experiment, we apply image size to 90 x 90 pixels size and there are \(k \) radius: \(r_1, r_2, \ldots, r_k \). Figure 5 shows sector masks according with the radius. And then, we make a mask operation on an image to extract pixel count of each angular sector region and stored as feature vector. Let \(H_{k, \theta} \) represent the histogram bin of each sector according with each radius:

\[
H_{k, \theta} = H_{k, \theta} + 1
\]

(1)

where \(r \) and \(i \) are the radius and the number of object pixel in \(i \)th radius. The angle \(\theta \) is range between sectors of \(45^\circ \) each. Figure 6 shows the example of mask operation. When query image is applied, we also considered for flip image. We extract features for both query and horizontally flip image. The cyclic shifting for \(45^\circ \) rotation invariant method\(^{10}\) is applied in our system. This method is applied on original query image and flip image.

(ii) Horizontal and vertical histogram

For the second feature, we extract horizontal and vertical histogram from the image. For horizontal histogram, we count the object pixel row by row and for vertical histogram, counting column by column and store result pixel count in each respective bin.

Let \(H_{h}(I) \) and \(H_{v}(I) \) denote the horizontal and vertical histogram of image \(I \), it can be expressed as:

\[
H_{h}(I) = [h(i,1), h(i,2), \ldots, h(i,n)]
\]

(2)

\[
H_{v}(I) = [h(j,1), h(j,2), \ldots, h(j,n)]
\]

(3)

where \(n, i \) and \(j \) are the number of \(n \) rows and \(n \) columns and the number of pixels in the \(i \)th row and \(j \)th column of the image.

When query image is applied, we extracted the horizontal and vertical histogram features for original image. And then, we compute for rotated version of 90, 180 and 270 degrees of query image. As like in angular radial approach, we also consider flip image and features are extracted. Cyclic shifting is also applied on extracted features. By doing this, having some rotational invariant can approved in matching process.

![Fig. 5. Sector Mask According with Radius (here \(r = 15 \) pixel)](image)

![Fig. 6. An Example of Mask Operation within \(\theta = (45^\circ \sim 90^\circ) \) with \(r_1=15, r_2=30, r_3=45 \)](image)

3.3 Similarity Matching

For the similarity measure, we apply Euclidian distance between query feature vector and database feature vector. This method is employed on both extracted features of original image and flip image. Let \(d \) be the Euclidian distance between query image and database image:

\[
d(x_q, y_t) = \sqrt{(x_q - y_{i1})^2 + (x_q - y_{i2})^2 + \ldots + (x_q - y_{in})^2}
\]

(4)

where

\(x_q = \) query features vector and
\(y_t = \) database features vector, \(t = 1, 2, \ldots, n \) (total number of images in the database).

When we compute Euclidian distance, we take minimum value resulted from query and database image or flip image and database image. We compute distance measure separately for each features. Let \(E_D \) represent the total value of all features Euclidian distance values:

\[
E_D = E_A + E_H + E_V
\]

(5)
where E_A, E_B, E_F represents Euclidean distance values for angular radial features, horizontal histogram and vertical histogram, respectively. Finally, the result are shown with rank value that are sorted Euclidean values in ascending order.

4. EXPERIMENTAL RESULTS

We test our system on MPEG-7 CE Shape-1 Part-B dataset. The dataset has a lot of strong variation within each class. Figure 7 shows some variation images in the dataset. In order to know the system performance, we used bulls-eye test\(^{(1)}\). All the images in the dataset are used as a query and the top rank of 40 images are returned.

<table>
<thead>
<tr>
<th>Class</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>bat</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td></td>
</tr>
<tr>
<td>fly</td>
<td></td>
</tr>
<tr>
<td>octopus</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Some Variations in MPEG-7 CE Shape-1 Part-B Dataset

Figure 8 (a), (b), (c), (d) show the some retrieval results (red rectangle are the correct matches). The maximum number of correct matches for each query is 20, so, the number of correct matches for whole dataset is 28000 (1400 x 20). Table. 1 illustrates the number of matches that are derived from all classes in the dataset.

We found that some classes in the dataset are sensitive to the system performance evaluation. Some of these classes are describe in Figure 9 and 10. When querying these kind of image, the performance is decreased and the distance between query and database images are too far. So, the images in the same class are left behind than the images that are not in the same class. In Figure 9 of beetle class, some image has more pixel than others. These fact can impact our system performance. Also in Figure 9 of dog class and guitar class, the absence of some pixel in the image has also made greater distance between query and database images. In Figure 10(b), although the system can retrieve the similar images, other images belonging to same class are far from the list. For improvement, we will continue to deal with such classes in our future works. The number of correct matches for each class is shown in Figure. 11. Overall, our system get a bulls-eye scores of $63.91\%.$

(a) apple-1 query, #(relevant images) = 19
(b) carriage-3 query, #(relevant images) = 20
(c) deer-2 query, #(relevant images) = 13
(d) face-4 query, relevant images = 20

Fig. 8. Some Experimental Results
Table 1. Number of matches (Among all classes)

<table>
<thead>
<tr>
<th>Accuracy Rate</th>
<th>No. of Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>7</td>
</tr>
<tr>
<td>99% ~ 90%</td>
<td>7</td>
</tr>
<tr>
<td>89% ~ 70%</td>
<td>15</td>
</tr>
<tr>
<td>69% ~ 50%</td>
<td>23</td>
</tr>
<tr>
<td>49% ~ 10%</td>
<td>18</td>
</tr>
</tbody>
</table>

![Fig. 9. Example of Some Class that Decrease System Performance](image)

(a) bat-1 query, #relevant images = 7
(b) dog-3 query, #relevant images = 6
(c) beetle-2 query, #relevant images = 3

![Fig. 10. Some retrieval results](image)

![Fig. 11. Retrieval Accuracy on Each Class](image)

5. CONCLUSION AND DISCUSSION

In this paper, we proposed a region-based shape descriptor to apply in TIR system. Angular radial and histogram of horizontal and vertical features are extracted from the image for feature vectors. After calculating similarity, image are shown according to the rank values. The region-based shape descriptor can describe interior details of the image while contour-based shape descriptor can give the outline details of the image. In our proposed system, angular radial features and also horizontal and vertical features work well when query image and database image are in appropriate position.
REFERENCES

A Hybrid Information Ranking System for Web Image Search

Swe Nwe Nwe Htuna, Khin Mo Mo Tunb, Mitsuhiro YOKOTAc, Thi Thi Zind

Abstract

Nowadays, web image search system is an important part of our daily life due to the tremendous amount of visual information in the World Wide Web (WWW). In order to meet users' satisfaction, many academic researchers have attempted to explore relevant information to the users with high accuracy. However, still a lot of improvements need to be done. Thus, in this paper, we propose a hybrid information ranking system for web image search in which we use community-based platforms with visual features to improve the relevancy between returned images and user intentions. Specifically, we propose a community-specific information ranking algorithm to re-rank the web information by taking user relevance into account. In doing so, we employ a correlated Markov Chain approach along with image similarities and processes of users' intentions. Through a series of extensive experiments, we will confirm that the importance of visual factors and community factors, and the effectiveness of the proposed ranking algorithm for Web Image Search.

Keywords: Hybrid information ranking, Web image search, Visual features, User Intentions, Community specific platforms, Markov chain

1. INTRODUCTION

A tremendous amount of research has been done on the topic of information ranking for web image search system. Today's digital web images have been more easily catchable on the dynamic movement of digital photography through the social networking and media storage technologies. People’s attention spans with the social media and content overloading, causing beliefs to search information quickly to pick out the individual thing that they want to pay attention among a wide range of information. This issue can make the importance to understand why images draw people’s emotion in so much more than text. The image can transfer a sea of information or it can emphasize on a single content. It just requires the correct image. Therefore, according to the rapid growth of numerous digital images on the web, there is a cumulative demand with effective and efficient method for retrieving the related images. However, the returned results are not very much satisfactory. Two significant reasons are (1) most of existing ranking systems have been focused on matching the textual queries with visual images (2) lacking to take user intentions into account. Thus, the concept of user intentions on the dynamic web search system becomes important.

According to the aspect of this problem, how to enhance the performance of existing web search retrieval approaches by using efficient and intelligent techniques in multimedia community platforms should be focused. Most of traditional web image search systems use textual queries with visual images to represent user intentions. We become well noticed a certain distance between users' interest concept of images and textual query representation of images. Today, users’ interest and great feedback can be used to regard user intentions as the user-oriented approach. We can obtain users’ interest from real-time information through social networking such as Facebook1, Twitter2, Pinterest3 Google+4, Yelp5, etc. together with users’ posted pictures, favorite posts with images, likes and ratings for images which are giving completely great values around the social network. Now, Google+, Pinterest, and Facebook: all of them have been directed to image-oriented layout.

Let’s see a clear example through our daily life with Facebook, Facebook’s posts with photos get likes more than on other posts without images. By taking this assumption, we can implement web information ranking system that the users really want through the two portions of users’ interested web pages and pages that include matching images by re-ranking the relevant web information integrating with user intentions. Moreover, we also extract low level visual image features including image texture features and color features with the approaches and trends of content based image retrieval.

Therefore, in this paper, we propose a hybrid information ranking system for web image search based on the following four research problems.

A. To propose an information retrieval system based on image features and textual features for Web Image Search Engine

a\url{https://www.facebook.com/} \quad b\url{https://twitter.com/} \quad c\url{https://www.pinterest.com/} \quad d\url{https://plus.google.com/} \quad e\url{http://www.yelp.com/}

1https://www.facebook.com/ \quad 2https://twitter.com/ \quad 3https://www.pinterest.com/ \quad 4https://plus.google.com/ \quad 5http://www.yelp.com/
B. To show how could the popular Google’s PageRank Algorithm be modified by using not only link analysis but also by using image similarity measurements?

C. To realize the proposed system in which a correlated Markov Chain method will be employed by taking user intentions taking into account

D. To evaluate the system, a series of experiments will be performed by using Yelp academic real-life academic dataset to prove the practical hypothesis for community-specific web image search information ranking system

2. SOME RELATED WORKS

Page ranking and user intentions are very important parts of today’s information search system. Whenever, users search information on the web by using a web search engine, the results are turned out according to their Page Ranks1). But sometimes, users are not getting the satisfactory results due to their derivations from the user intentions and lack of visual similarities taking into account. Mostly, Page Ranking depends on hyper-link analysis so that web pages are not ranked properly. Because most of several sites on the web create complicated link structure to obtain weighted PageRank’s score for their pages2). These complex link structure persuades to the derivation for lack of users’ intent. Besides, in most of conventional image search engine, user intentions are represented by textual query. Inputting a textual query to get visual image, the purpose is to extract the most related results and ranks depending on the relevancy of the query. In addition, existing conventional search engines highly depend on the surrounding texts corresponding with associated images. The similarity measurement on web search engine between textual query and image is fixed based on the textual feature vectors. Consequently, the text content query cannot define exactly to describe the visual similar images which are lacked with surrounding text. Thus a sizable amount of existing research work attempts to improve the relevance between the textual query and visual images. However, the textual query and link analysis alone cannot provide the satisfactory results. Let’s take the query “Apple” as an example. While the query “Apple” is giving on the web search engine, different users have different intentions3). Some are expecting Apple computer images, while others are expecting Apple fruit images. This type of situation occurs frequently, particularly for queries with not specific concepts. It still remains open to solve and understand user intention problems for web search system.

To address these problems, users’ interest can be learned through the growing real time information distributing social network. Through such social network, we can give interesting ratings on images with each other and explore related information together with pages. When a user gives “Like” function on social network associated with the images, this function directly emphasizes the exact way of expecting users’ interests, such as user-service behavior as an example4). Moreover, other real social networks e.g., Facebook, while a user clicks “like” icon to the users’ posts, this “like” function is the action that supports the useful method of recommending some information on the social network. Thus, we can obtain huge amount of web information, group of users and users’ interesting images. Therefore, in this paper, we construct combination of user’ interest image group based ranking and image content analysis based ranking from the social media platforms by supporting users’ requirements.

3. PROPOSED HYBRID INFORMATION RANKING SYSTEM FOR WEB IMAGE SEARCH

An overview of the proposed system is described in Fig. 1. The system is composed of two components namely User-Intent Web Page Analysis Component and Web Page Image-Content Similarity Analysis Component. The first component is for establishing users’ interest image collections together with pages and computation of user intent information ranks. The second component is for collected image content analysis. We then combine the resultant ranks to produce the User-Intent Web Image Rank.
3.1 User-Intent Web Page Analysis Module

In the first component, we establish image interest user groups by collecting data through the web pages. This is done by taking facts from the Yelp online dataset\(^1\). After that, two link matrices: user-intent web page link graph and image-web page link graph are embedded into Markov Chains. We will denote that user-intent web page link graph means the web page that the users want and image-web page link graph means the images that match with the pages. Suppose \(U\) be the transition probability matrix derived from user-intent web page graph and \(V\) be the corresponding matrix derived from image-webpage graph. Then, the product of the two matrices \(U\) and \(V\) will give the single Markov Chain matrix for taking user-intent web page graph. Specifically, the stationary distribution of UV matrix will produce the user-intent-web page-image rank. We will denote this rank as UWI Rank.

3.2 Web Image Similarity Analysis Module

In the second component, the visual contents of an image will be analyzed for ranking images. First, we extract texture features and color features from the query image and collected image database. Then, we retrieve the similar images by using usual distance measures.

The textures features are extracted by using the co-occurrence of pixel values of the images. Although there have been used several features in research area, we here apply the texture features such as mean, variance, contrast, correlation, homogeneity, energy developed in\(^9\). Next, we also extract color features including RGB-based color moments, 256-D color histogram based on HSV color space\(^6\) \(^7\) \(^8\), 64-D correlogram\(^9\), and edge histogram and edge direction\(^10\) to represent images with different views of perspective. By integrating the texture and color feature vectors for query and target images, we get the weighted distance function to be used for re-ranking. Let the optimal rank of image \(I\) be denoted by WIS (Web Image-Content Similarity) Rank.

3.3 User-Intent-Web Image Rank

After generating users’ interest image group on web page analysis based rank \(UWI\ Rank\) and image content analysis based rank \(WIS\ Rank\), we derive the final user-intent-web image rank as described in the following equation:

\[
\text{User-Intent-Web Image Rank} = \alpha (UWI\ Rank) + (1-\alpha) WIS\ Rank
\]

when \(0 < \alpha < 1\).

3.4 The Dataset

To implement the proposed system well, we use Yelp academic dataset describing about the business.

\(^{1}\)https://www.yelp.com/dataset_challenge/dataset
The wide variety of image data also provides a plentiful of business information around the network on the web visually. So, we apply both of text data and image data for implementing hybrid information ranking system for image search. Image dataset is composed of different classes of categories. People can imagine a variety of ways to tackle the ambiguous goal of historically understanding images. To make simpler this problem, Yelp initially focused on only sorting images with a handful of predefined classes with caption and label. As an example, Yelp focused on only categories of images directly relevant to the restaurant on the business page is shown in Fig. 4. To develop a classifier, a photo is put in one of the predefined group with known labels “photo’s caption and attributes”.

4. ANALYSIS AND EXPERIMENTAL RESULTS

In order to illustrate the proposed web image ranking system method, we here use huge amount of relationship within business, review, user, tip and a set of images from Yelp business network. It includes 78290 business and different categories of 15668 food images, 15651 drink images, 15638 menu images, 15638 inside images, and 15649 outside images. Example of some images used in experiments are shown in Fig. 5. To include the concepts of user intentions, we implement the relationships between the users and business pages are described in Fig. 6. In the figure, the Entity Relationship diagram describes the connection to associate in the network and will support the actions between users voting and business reviews, stars and rating on the increase becoming more frequent or becoming greater. Here, “Rating Stars and Business Reviews” can be regarded as the importance and weighted functions by allowing users to explore their interests of objects. These facts provide the great way of estimating users’ interests and intelligent approach for informing the related information around the social network. Substituting the values that are required for business to run the network, we then finally obtain user-intent based web business page Markov Chain Transition Matrix UWI Rank.

On the other hand, by using image content analysis module, image features are extracted from the query image and images stored in database. We here use GLCM texture feature extraction as shown in Fig. 7. In addition, we extract RGB based color moments, HSV histogram, color correlogram, edge direction and edge histogram as the color features of images described in Fig. 8. In the figures, when user uploads a query, the contents of images are retrieved form a query image and image database.
The wide variety of image data also provides a plenty of business information around the network on the web visually. So, we apply both of text data and image data for implementing hybrid information ranking system for image search. Image dataset is composed of different classes of categories. People can imagine a variety of ways to tackle the ambiguous goal of historically understanding images. To make simpler this problem, yelp initially focused on only sorting images with a handful of predefined classes with caption and label. As an example, Yelp focused on only categories of images directly relevant to the restaurant on the business page as shown in Fig. 4. To develop a classifier, a photo is put in one of the predefined group with known labels “photo’s caption and attributes”.

4. ANALYSIS AND EXPERIMENTAL RESULTS

In order to illustrate the proposed web image ranking system method, we here use huge amount of relationship within business, review, user, tip and a set of images from Yelp business network. It includes 78290 business and different categories of 15668 food images, 15651 drink images, 15638 menu images, 15638 inside images, and 15649 outside images.

Example of some images used in experiments are shown in Fig. 5. To include the concepts of user intentions, we implement the relationships between the users and business pages are described in Fig. 6. In the figure, the Entity Relationship diagram describes the connection to associate in the network and will support the actions between users voting and business reviews, stars and rating on the increase becoming more frequent or becoming greater.

Here, “Rating Stars and Business Reviews” can be regarded as the importance and weighted functions by allowing users to explore their interests of objects. These facts provide the great way of estimating users’ interests and intelligent approach for informing the related information around the social network. Substituting the values that are required for business to run the network, we then finally obtain user-intent based web business page Markov Chain Transition Matrix UWI Rank.

On the other hand, by using image content analysis module, image features are extracted from the query image and images stored in database. We here use GLCM texture feature extraction as shown in Fig. 7. In addition, we extract RGB based color moments, HSV histogram, color correlogram, edge direction and edge histogram as the color features of images described in Fig. 8. In the figures, when user uploads a query, the contents of images are retrieved from a query image and image database.

![Fig. 3 Heterogeneous architecture of Yelp Real-life business network through online](image)

![Fig. 4 Categories of some images in business page](image)

![Fig. 5 Sample images used in experiments](image)

We currently use five categories of image type. Since the query category has been “drink image”, same image category “30 drink images” are selected by combining image content features. As the results and ranks of visually similar images with respect to the query image, Euclidean distance measure, Cosine distance and Histogram intersection are applied. After computing image content analysis module as shown in Fig. 9, we obtain WIS Rank. After calculating both of user-intent web page analysis module and image content analysis module, we combine both of these ranks to re-rank user-intent web image rank. The summarized experimental results are shown in Fig. 10 and Fig. 11. In the figure, when users upload a query that desire, the resultant pages are appeared on the browser page. The result page proves that the most relevant visual similar images that matched with user query. Users then also obtain other related information that they want to find from the ranked similar images with the business ratings.

![Fig. 6 Entity relationship diagram for describing the actions of business network architecture](image)

![Fig. 7 Similar ranked images with texture features](image)
5. CONCLUSION

In this paper, we had proposed a hybrid information ranking system for web image search by taking user intention taking into account. We had employed both of user intent web page analysis and web image content similarity analysis. We had also discovered how we can combine visual image contents and user intentions to learn the meaning of user oriented concept. We carried out the series of the experiments to confirm the usability our proposed system by using real-life data on the World Wide Web. Therefore, the implementation of the proposed system demonstrates the effectiveness and efficient approach for web image search by using the large scale Yelp academic dataset.

REFERENCES

49Design of Low $1/f$ Noise Folded Cascode Operational Amplifier by Using Chopper Stabilization Technique

Fadila Norasarin ERITHAa), Koichi TANNOb)

Abstract

Biological signals have low voltage and low frequency. Very low noise, high gain, fast speed and stable amplifier are necessary to process these signals. Unfortunately, $1/f$ noise found at below 1 kHz is unavoidable problem if the amplifier is built by CMOS process. To overcome this problem, CMOS is folded and then cascaded. In order to reduce $1/f$ noise, chopper stabilization technique is implemented. The circuit were evaluated by using HSPICE simulation with 0.6 μm CMOS process. Using this technique, $1/f$ noise can be reduced 46.55 dB in average.

Keywords: Biological Signals, Folded Cascode Operational Amplifier, Chopper Stabilization Technique, $1/f$ Noise

1. INTRODUCTION

Biological signals are used to operate medical and health care system. This kind of signals are very weak (low amplitude) and very low frequency1. Figure 1 shows the range of biological signal voltages and frequencies. In order to acquire, record, and analyze in next processes, this signals have to be amplified.

Many integrated Operational Amplifiers (Op-Amps) build with CMOS technology. Two stage Op-Amp is commonly used due to its DC gain and the wide swing at low supply voltages. Furthermore, to meet the requirement for modern technologies, the high gain becomes one of crucial parameters to be a suitable Op-Amp. Combining the cascode and folded CMOS into Op-Amp achieves requirement mentioned before, even gives bigger swing in output. Further, pole at folded cascode is closer to origin than the other cascode technique, telescopic cascode. As a result, this circuit works more stable, however it is followed by several things, such as high power dissipation and lot of noises2.

One of big problems from the present noises is $1/f$ noise or known as flicker noise, spread over in semiconductor devices especially MOSFET. This noise randomly shows up at low frequency, and it will limit the biological signal to be detected3. However, using power spectral density distribution of $1/f$ noise, it can be characterized in

$$S(f) = \frac{1}{f^\alpha},$$

where α’s value in range 0.7-1.3 typicallyb.

Meanwhile, this $1/f$ noise has a connection to the other noises as shown in Figure 2. It means that reducing $1/f$ noise will affect the reduction of the other noises. The junction between $1/f$ noise and white noise is named as f_{knee}. In another reference, this f_{knee} connects to thermal noise2.

Chopper Stabilization Technique is one of prominent technique to reduce $1/f$ noise. Using this technique, $1/f$ noise is modulated into high frequency, demodulated after got amplified and separated from biological signal using low pass filter.

a) Master Student, Graduate School of Engineering
b) Professor, Dept. of Electrical and Systems Engineering
In the past, we designed the instrumentation amplifier which consists of Fully Balanced Differential Difference Amplifier (FBDDA) and Differential Difference Amplifier (DDA) with Chopper Stabilization Technique (CST)\(^5\). However, our past circuit, CST was applied to the FBDDA only. Therefore, \(1/f\) noise and offset voltage of DDA cannot be reduced. In order to overcome this problem, we try to apply CST to DDA which can be realized with Folded Cascode Operational Amplifier.

2. FOLDED CASCODE OPERATIONAL AMPLIFIER

Folded cascode operational amplifier (see the dotted line in Figure 3) is one of the stable Op-Amps and widely used. However, this circuit does not have wide output range and drivability of loads due to the high gain of the folded cascade Op-Amp that is only can be achieved by very high output impedance. In order to overcome this problem, two stage Op-Amp, which consists of folded cascode circuit and common-drain circuit or class AB common-source circuit, is obtained.

In this research, we employed two stage Op-Amp consists of folded cascode circuit and class AB common-source circuit with level shift circuit in order to achieve the very high gain and drivability, as shown in Figure 3. The circuit of the left side in Figure 3 is the bias circuit for the folded cascade circuit. Since this Op-Amp is two stage operational amplifier, the phase compensation is necessary. Therefore, we add the phase compensation circuit which is capacitor and resistor as shown in Figure 3.

However, this Op-Amp (Figure 3) suffers with \(1/f\) noise. In this research, we apply the CST to this Op-Amp.

3. PROPOSED CIRCUIT

\(1/f\) noise is known as well spread in the semiconductor devices. MOS transistor suffers higher in this situation than the other semiconductor devices. Unlike all of another noises, \(1/f\) noise cannot be predicted easily. However, it can be modeled like Equation 1 and 2

\[
\overline{V}_{n,1/f}^2 = \frac{K_F}{C_{ox}W_L} \cdot \frac{1}{f}
\]

\[
\overline{I}_{n,1/f}^2 = \frac{K_F}{C_{ox}W_L} \cdot \frac{1}{f} \cdot gm^2
\]

where \(K_F\) is constant of process and has value in order of \(10^{-25} \text{ V}^2\text{F}\).

Equation 1 and 2 are the approximation of \(1/f\) noise without another noises contribution. When thermal noise is included, total noises can be rewritten as Equation 3.

\[
\overline{I}_{n,\text{total}}^2 = 4kT \cdot \frac{2}{3} gm + \frac{K}{C_{ox}W_L} \cdot \frac{1}{f} \cdot gm^2
\]

However, in this research, thermal noise and the others can be neglected. Focus is given on \(1/f\) noise only because we try the low frequency signal such as biological signals.
Figure 6 is the folded cascode circuit with CSTs which is employed in this research. Namely we used the circuit shown in Figure 6 instead of the folded cascode circuit shown in Figure 3 (dotted line). The switches for chopper 1 and chopper 2 are implemented as shown in Figure 7 and 8, respectively.

The effect of 1/f noise or noted as \(V_n \), can be minimized using CST. The process of CST is shown in Figure 4 (a-d). In Figure 4 (a), input and output signal are given name as \(V_{IN} \) and \(V_{OUT} \) respectively. \(V_{IN} \) enters switches for the first CST, which is controlled by \(m(t) \) and \(V_{IN} \) is modulated to the high frequency band. \(V_n \) is added to this modulated signal. After that this signal is amplified and lastly, this modulated signal is demodulated by the second \(m(t) \).

Stand for figure 4 (b) to (d) is explanation of the processes through graphics. \(V_{IN} \) and \(V_n \) can be separated by using this system. First \(V_{IN} \) (Figure 4 b) is modulated by the first CST. \(V_n \) is added and both of them are amplified by \(A \) (Figure 4 c). However, as shown in Figure 4 (d) while \(V_{IN} \) is demodulated by second CST, the different process is applied onto \(V_n \). CST modulates \(V_n \) to higher frequency. The line between \(V_{IN} \) and \(V_n \) is filter region to remove modulated \(V_n \) completely.

Figure 5 shows the proposed system which consists of the Op-Amp from Figure 3, switches for CST and Gm-C low pass filter.
From the above explanation, the output voltage can be given by Equation 4.

\[
V_{out} = \left(-\frac{R_F}{R_{IN}} \right) \left\{ V_{in} \sin(\omega t) + V_n g(t) \right\}
\]

(4)

where \(g(t) \) is the clocks of CST and has a function like shown in Equation 5.

\[
g(t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\left\{ (2n-1)\omega t \right\}
\]

(5)

\(V_{OUT} \) has both of input signal and modulated noise. To remove noise influences, Low Pass Filter (LPF) is necessary added. As mentioned in Figure 5, continuous time based on transconductors and capacitor filter (Gm-C LPF) is used. In order to remove \(V_n \), the order of Gm-C LPF and its cut-off frequency should be tuned. These values are depending on the frequencies of \(V_{IN} \) and CLK.

4. SIMULATION RESULTS

The proposed circuit was evaluated by using HSPICE with 0.6 µm CMOS process. The simulation conditions was listed in Table 1.

As shown in Table 1, \(V_{IN} \) set in 5mV amplitude with 100 Hz of frequency because general biological signals are very weak and low frequencies (even below 1 kHz).

HSPICE does not have a function of transient analysis with noise. Therefore, we employed three sinusoidal signals in order to represent of 1/f noise. The sinusoidal signal frequencies set on 20 Hz, 40 Hz and 60 Hz and their amplitude were 0.1V, 0.01V, and 0.001V respectively.

In order to evaluate the effectiveness of the proposed circuit, we compared between the proposed circuit and folded cascode operational amplifier without CST.

Figure 9 shown the FFT results of the proposed circuit (with CST) and the conventional circuit (without CST). This figure explained if the proposed circuit could drastically reduce \(V_n \) (three sinusoidal signals). For example, this reduction of 20Hz reached 2586.5 times or 70.47 dB in calculation of FFT analysis. The concrete values of \(V_n \) were listed in Table 2. From these results, we could find the effectiveness of the proposed circuit.

Table 2. Simulation comparison of non-chopper and chopper implementation

<table>
<thead>
<tr>
<th>Item</th>
<th>Without CST</th>
<th>With CST</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_n) at 20 Hz</td>
<td>-0.269 dBV</td>
<td>-68.523 dBV</td>
</tr>
<tr>
<td>(V_n) at 40 Hz</td>
<td>-20.775 dBV</td>
<td>-56.076 dBV</td>
</tr>
<tr>
<td>(V_n) at 60 Hz</td>
<td>-41.172 dBV</td>
<td>-70.629 dBV</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>-31.315 dBV</td>
<td>-30.866 dBV</td>
</tr>
</tbody>
</table>

Next, we confirmed the influence of the frequency of CLK in the proposed circuit. The chosen frequencies were 1 kHz, 4 kHz, and 10 kHz. The comparison results of FFT analysis were shown in Figures 10, 11 and 12.

Figure 10 gave information that \(V_n \) was already modulated to higher frequency band and could be removed by using LPF. However, we still could find very small \(V_n \) (the remaining of \(V_n \)). The remaining of \(V_n \) had larger magnitude alongside the increase of chopping frequency as shown in Figure 10.

Figure 11 shown the enlargement of the low frequency area of Figure 10. For same frequency (i.e. 40 Hz) differences of the remaining of \(V_n \) on 1 kHz and 10 kHz reached 14.75 times or 25.59 dB.
Figure 12 showed the output voltage after Gm-C LPF. From the results, we could find low noise floor when chopping frequency of CST was high. In addition, modulated V_n, which was moved into around chopping frequency, was smoothly removed in higher chopping frequency.

If we compared the simulation results (1 kHz, 4 kHz and 10 kHz), the performance in the case of 4 kHz was better, because the remaining of V_n was small and remaining noise in high frequency band was smooth. Therefore, we focus on the signals on each node in the case of 4 kHz chopping frequency.

Figure 13 shown the process of FFT analysis under 4 kHz chopping frequency. The amplification was 9 times in theory and removing V_n.

From Figure 13, the magnitude of V_{IN} was -49.49 dBV and the modulated signal moved into f_{clock}/2Δf_{input} and left the remaining of V_n. Next, the signal was amplified 9 times by the amplifier. Finally, the noise of the high frequency band could be cut by LPF and we could get smooth characteristics in high frequency band. It almost completely removed the modulated 1/f noise. However, the amplification was also reduced around 8.29 dB.

5. CONCLUSION

In this paper, design of low 1/f noise folded cascode operational amplifier by using chopper stabilization technique has been proposed. Using this design, the 1/f noise can be reduced drastically. The average of this reduction is 44.337 dBV or 164.767 times. Furthermore, the remaining 1/f noise is reduced along with reduction of chopping frequencies.

The actual chip fabrication and its evaluation are future work.

REFERENCES

1) Zoe Brown and Ben Gupta, “Biological Signal and Their Measurements,” Anaesthesia.
DDoS 攻撃ログデータ解析による人と攻撃通信判別に関する研究

橘 弘智 a)・有川 祐樹 b)・白崎 翔太郎 c)・久保田 真一郎 d)・
高塚 佳代子 c)・山場 久昭 f)・岡崎 直宣 g)

 Discriminating Legitimate Accesses from a Web Access Log Recorded During DDoS Attack

Hiroaki TACHIBANA, Yuki ARIKAWA, Shotaro USUZAKI, Shin-Ichiro KUBOTA,
Kayoko TAKATSUKA, Hisaaki YAMABA, Naonobu OKAZAKI

Abstract

Web services are indispensable in everyday life, and damage caused by denial of service (DoS)/distributed denial of service (DDoS) attacks is becoming serious. An intrusion detection system (IDS) is very useful to detect various attacks including DDoS attacks. But an IDS often makes false detections, not a few legitimate accesses are reported as attacks. Then, there is a possibility that a legitimate user who is detected erroneously can not receive service. We proposed a system to mitigate HTTP-GET Flood attack that is one of DoS/DDoS attacks in the previous work. This system not only can protect servers from attacks using IDS but also can guarantee their services by introducing a server that picks out legitimate accesses in the accesses detected by the IDS. In this study, we propose a method to find out legitimate accesses that is the important part of the HTTP-GET Flood attack mitigation system. Information obtained from the access log is used in the method. Besides, since false detections such that an attack is picked out as a legitimate access make IDSs ineffective, the proposed method must keep such false detection rate low. We conducted an experiment that uses an access log of an actual server to verify the effectiveness of this system. The result of the experiment showed that the proposed method picked out many of the legitimate users that were charged by the IDS falsely and could practically avoid picking out malicious attacks by mistake.

Keywords: HTTP-GET Flood attack, Web access log, Machine learning
攻撃を引き起こすものである。
寺田は、攻撃の対象によってDoS/DDoS攻撃を以下の種類に分類できるとしている。

- ルータやサーバの脆弱性への攻撃
 権限のない攻撃者が不正な方法でプログラムを実行したりファイルを読み書きするために、安全性が考慮されていないプログラムのコーディングによって発生する脆弱性に対して行われる攻撃

- 回線帯域への攻撃
 正当なユーザがサーバに接続不能になるように大量のトラフィックを発生させて回線帯域を埋め尽くす攻撃

- Webサーバへの攻撃
 システム資源を大量に消費してWebサーバをサービス不能な状態にする攻撃

HTTP-GET Flood攻撃はWebサーバへの攻撃に分類され、図1に示すようにTCPコネクション確立後一斉にHTTP-GET要求を送信することで、サーバに大量の応答処理を発生させ、パフォーマンスを低下させたり、動作を停止させる攻撃である。

現在、このHTTP-GET Flood攻撃の対策に関する様々な研究が行われているが解決には至っていない。これは、HTTP-GET Flood攻撃の個々のアクセスはHTTPプロトコルに準拠しており、攻撃と正当なアクセスに差がないという特徴があるためである。

2.1 HTTP-GET Flood攻撃の検知
HTTP-GET Flood攻撃の検知を行う基本的方法としてApacheモジュールを導入する方法があり、主にmod_evasiveモジュールとmod_dosdetectorモジュールが使用される。これらのモジュールでは同一IPアドレスから一定量以上のアクセスがあったかどうかを攻撃の検知を行う。そのため多数のホストからのアクセスが送られるような攻撃では検知できない。

Yatagaiらは、ページアクセスの挙動を解析することでHTTP-GET Flood攻撃を検知する手法を提案している。具体的な攻撃検知の方式としては、アクセス順序の重複検知方式とページ内情報量と閲覧時間の相関に注目する検知方式の2種類があり、判別精度を測る実験を行った結果、4または5回程度のアクセスを解析すれば高い精度で攻撃検知できるとしている。そのため、Yatagaiらの手法を使うと、同一IPアドレスからの少量のアクセスで多数のホストから少しずつアクセスが送られるような攻撃では検知できない。

ウイルスやボットネットに感染した端末によるHTTP-GET Flood攻撃は予め設定されたURIに対してリクエストを送信するため、同じウイルスに感染した端末は同じページアクセスを連続的に実行するという特徴を持つ。アクセス順序の重複検知方式、そのページアクセスの特徴を利用して、各IPアドレス同士のアクセス順序を比較して同一アクセス順序でアクセスしているIPアドレスが複数検出できた場合、それらのIPアドレスからのアクセスは攻撃であると判定する。

2.2 HTTP-GET Flood攻撃の緩和策
攻撃の影響を軽減する手法として仮想計算機を使用し攻撃を緩和する研究が行われている。これらの研究では、攻撃者がサーバ側で攻撃を検知し何らかの対策を講じたことに気づき、攻撃対象のサーバを変更したり攻撃手段を変更して対策を回避するように攻撃を増やし続けるため、この問題に対して、仮想計算機を使用すると仮想計算機の仮想CPUを制限して提供することで、攻撃が成功しているかのように見せ、攻撃者が対策を回避するのを防ぐ手法を提案している。この方法では、仮想計算機の性能によっては正当なユーザにパフォーマンスの悪いサービスを提供してしまう可能性がある。

2.3 HTTP-GET Flood攻撃緩和システム
我々は、通常のWebサービスを行うWebサーバ（以下、メインサーバ）とは別に、IDSに検知されたアクセスに対して一時的にこれを検知した仮想サーバを使用することで、ユーザのサービスを担保しつつ、HTTP-GET Flood攻撃を緩和するシステムの研究を行ってきた。このシステムの目的は、IDSによって攻撃と正当なアクセスの見分けがつかず、一斉に破壊されていった正当なアクセスを救い、正当なユーザのサービスを担保することである。
システムでは、HTTP-GET Flood 攻撃の個々のアクセスは、通常の Web サービスを行う攻撃時以外ではすべてのアクセスを受け入れる。IDSが検知したアクセス元からのアクセスを受け入れ、または正当なアクセス元と判断する機能を有する。

3. 正当なアクセスを判別する手法

一般に、HTTP-GET Flood 攻撃時の個々のアクセスは、正式な HTTP プロトコルに準拠したものであるため正当なアクセスと区別することが難しい。しかし我々は、人が Web サイトをアクセスして欲しい情報を得ようとする場合と、HTTP-GET Flood 攻撃を起こして Web サイトに高負荷を与えるような場合で挙動が異なると考えた。そこで本研究では、個々のアクセスではなく、ある程度までまったアクセスに注目することで、Web サイトを利用したホストの挙動を表す情報を得ることができる。これにより、挙動の違いを正当なアクセス判別に利用する。

あるユーザが Web サイトを訪問してから離脱するまでのある程度まとしたアクセスをセッションと呼び、最後のアクセスから 30 分以上間隔があった後のアクセスは新たな別のセッションとした。

まず、検疫サーバが過去に受けた正当なアクセスの情報から、正当なセッションの特徴を得る。次に、攻撃を受けた際のアクセス情報として、攻撃ツールを使用して擬似的に攻撃を起こし特徴を得る。判別を行いたいセッションから抽出した特徴をこれら2の特徴と比較し、正当なセッションと攻撃セッションどちらに近いか判断する。

判定したいセッションの特徴が正当なセッションと攻撃セッションのどちらに近いか判断するための方法として機械学習を採用する。機械学習を使用することで挙動の特徴を表す複数の要素を総合的に加味して判別することができる。

また、アクセス情報の取得には、Web サイトのアクセスログを使用することとした。パケットキャプチャデータを使用する場合では、正当なアクセスの特徴を得るために長期間パケットキャプチャを行い、正当なアクセスの情報を集める必要があるが、アクセスログを使用する場合には、過去の実運用で記録されたアクセスログを利用できるため、別途正当なアクセスの情報を集める手間がないという利点があると考えた。

3.1 人と攻撃の挙動差

本研究では、Web サイトにアクセスする際、1つ、セッションにおいて、人と攻撃の挙動に以下のような差があると仮定した。

(a) 攻撃時のアクセスに比べて人によるアクセスはアクセス間の間隔が長く、ばらつきが大きい。

(b) 攻撃時のアクセスに比べて人によるアクセスは Web ページ内にあるリンクを辿ってページを遷移することが多い。

人はページの内容を読み込むため、攻撃に比べてアクセスの間隔が長くばらつきが大きくない傾向がある。しかし攻撃者たちはページの内容を読み込むため、攻撃に比べてアクセスの間隔が長くばらつきが大きくなる傾向がある。これを考慮した上で、著者らはセッション間の差を示す特徴として、「セッション間の差を示す」に選択した。
図3. HTTP-GET Flood攻撃緩和システム処理の流れ

アクセス間隔の平均時間・標準偏差
内容: アクセス間隔の平均と標準偏差
抽出方法: アクセスログの「時刻」項目を元に各アクセス間隔を計算し、それらの平均と標準偏差を計算する

人は興味のある内容に関連したページを閲覧するためリンクを辿ってアクセスを行うと考えられるが、攻撃ではリンクを辿るようなアクセスを行わないと考え挙動差(b)を決定した。例えば、ボットネットを用いてHTTP-GET Flood攻撃を行うことができる有名な攻撃ツールキットにDirt Jumperがあるが7)、Dirt Jumperでボットネットを操作し攻撃を起こす際、ボットがアクセスするページはURIを入力することで指定するためリンクの有無に関係なく次にアクセスされるページが決定される。挙動差(b)を表す特徴量として以下を選択した。

リンクのないページへ遷移した割合
内容: セッション内の全アクセス回数のうちリンクのないページへ遷移したアクセス回数の割合
抽出方法: アクセスログの「リクエストの最初の行の値」からどのページへアクセスしたかという情報を得て、セッション内の各ページ遷移について、Webサイトのリンク構造情報を元にリンクないページへ遷移している回数を計測し、セッション内の遷移した合計回数で割ることで計算する

3.2 挙動差により判別を行う流れ
提案する手法での判別は、識別器学習フェーズと判別フェーズからなる。識別器学習フェーズでは、メインサーバの過去の運用で記録されたアクセスログを正当なアクセスログとし、攻撃ツールを使用して作成した攻撃時のアクセスログとして扱う。そして、それぞれのアクセスログをセッションに分割し、正当なセッションと攻撃セッションそれぞれの特徴を識別器に学習させる。

判別フェーズでは、検疫サーバへアクセスが流れることで記録されるアクセスログをセッションに分割したものから特徴抽出し、学習済みの識別器に適用することで正当なセッションを判別する。

3.3 アクセス回数1のセッションの判別手法
アクセス回数1のセッションにはアクセス間隔やページ遷移が存在せず、3.1節で仮定した挙動差を得ることができないため、アクセス回数が1のセッションでは挙動差による判別が困難である。アクセス回数が1のセッションはページアクセスのエントロピーを利用した別の手法で判定を行う。

よく閲覧されるページへアクセスされることが多く、攻撃によるアクセスはランダムなアクセスになるという仮定のもと、IDSが攻撃だと検知したアクセスの中で、あまり閲覧されないページへのアクセスは、攻撃である可能性が高と考え、閲覧される度合いが低いものも間違いないと考えた。閲覧される度合いにはページアクセスのエントロピーを使用する。例えば、あるページへのアクセスを判別する際、「ページAへのアクセス」という事象が持っている情報量がエントロピーよりも低い場合は、よく閲覧されるページへ
のアクセスなので攻撃ではないとみなし、逆にエントロピー値よりも高い場合は攻撃だと判定する。通常時に閲覧される度合いを判定に利用するので、メインサーバーの過去の運用でとられたアクセスログからエントロピーを計算する。

あるページへのアクセスという事象が持っている情報量（I）を使用する。

\[I = - \log_2 P_i \]

式中の \(P_i \) はページiにアクセスされる確率を表し、このとき、ページアクセスのエントロピー（H）は以下のようになすことができる。

\[H = - \sum_{i=1}^{n} P_i \log_2 P_i \]

4. 正当なセッション判別手法の検証実験

提案する正当なセッション判別手法の有効性を示すため、実運用で得られたアクセスログをもとに判定精度を測定する実験を行う。

このとき、攻撃アクセスを正当なものとする誤検出の割合を低く抑えることができるかを重視して検証する。これは、検疫サーバがIDS に攻撃と検知されたものの中から正当なアクセスを検出するという役割をもっていて、攻撃を正当なものとする誤検出はIDSの効果を減らしてしまうためである。

4.1 実験で使用するアクセスログ

Apache11のアクセスログ検証に利用する。Apacheを使用して公開されているWebサイトをクリアントがアクセスすると、クリアントがアクセスした役割やGET要求ファイル名などがアクセスログに記録される。Apache は1896年から世界シェア1位を維持してきたWebサーバソフトウェアであり、使用している企業・団体が多いと考えられることに加え、特別な操作なしにアクセスログが記録される設定であるため、本提案システム用に特別な準備は必要ない。

Apacheではアクセスログに記録する内容を増やすといったようなカスタマイズが可能だが、本提案システムの可用性を保つためデフォルトの設定で記録されるアクセスログ項目から特徴量を抽出する。

正当なセッションと攻撃セッションが混ざったものから正当なセッションを判別できるか検証するためには、正当なアクセスを記録したアクセスログと攻撃を記録したアクセスログを用意する必要がある。

正当なアクセスを記録したアクセスログとして、メインサーバーの過去の運用で記録されたアクセスログを用いる。メインサーバーの過去の運用で記録されたアクセスログには、大規模な攻撃が含まれていないことを前提にする。また、利用するアクセスログの期間は90日間とした。これは法務省の「犯罪の国際化及び組織化並びに情報処理の高度化に対処するための刑法等の一部を改正する法律案」12で説明されているように、捜査機関が通信履歴の電磁的記録に係る差押えを行う場合、90日間を上限とし保全要請を実施する場合があるということを参考に、少なくとも90日間はアクセスログを保管していると考えたためである。

本実験では、正当なアクセスが記録されたアクセスログとして宮崎大学情報システム工学科 Webサーバ（以下、情報科 Webサーバ）のアクセスログを利用した。約1年間分のアクセスログを90日間ごとに区切り、それぞれQ1からQ4とし、情報科 Webサーバのアクセスログ詳細を表1に示す。

HTTP-GET Flood 攻撃が記録されたアクセスログは、BoNeSi13というソフトウェアを使用して作成する。ローカル環境下にWebサーバを作成し、そのWebサーバに対して攻撃することで攻撃記録されたアクセスログを作成する。本実験では情報科 Webサーバを攻撃緩和の対象として検証を行うため、情報科Webサーバと同じWebページの構造をもつWebサーバ（以下、ダミー Webサーバ）を作成した上で攻撃し、情報科 Webサーバが攻撃された際のアクセスログを擬似的に作成した。

BoNeSiはネットトラフィックをシミュレートしDDoS攻撃の影響を調査するためのツールであり、異なるIPアドレスからのICMP、UDPおよびTCPを使用したフラッドライトの攻撃を作成できる。攻撃の種類や規模を設定するために指定するパラメータが複数あるが、今回は表2に示すパラメータを指定し35秒間の攻撃を行った。攻撃の結果記録されたアクセスログの詳細を表3に示す。

特定のWebページへのアクセスした記録をもとに特徴量を求めるため、特定ページに付随するCSSファイルや画像ファイル、JavaScriptファイルなどの除外した。除外した拡張子は.gif、.jpg、.png、.ico、.css、.jsである。同様の理由で、Webサーバ上のファイルやフォルダを管理するためのプロトコルであるWebDAVの使用によるアクセスログと、URIの打ち間違いなどによるエラーアクセスログを除外した。これらの調整を行った後のアクセスログ詳細を表4に示す。
4.2 検証方法

4.1節で説明したアクセスログをもとに、挙動差による判別手法とエントロピーによる判別手法それぞれの判別精度を確認し、提案する判別手法の有効性を検証する。

準備したアクセスログをセッションに分割し、アクセス回数2以上のセッションを集めたグループ(以下、セッショングループ1)と、アクセス回数1のセッションを集めたグループ(以下、セッショングループ2)に分ける。

挙動差による判別手法の精度は、セッショングループ1をもとにK-分割交差検証を行って算出する。K-分割交差検証は、データセットをK個に分割し、まず1つをテストデータ、その他を訓練用データとして精度の算出を行い、次に別のデータをテストデータとして選択し、残りのデータを訓練用データとして再度精度の算出を行うという処理をK回繰り返し精度の平均をとることで、未知のデータに対する推定の精度を測る方法である。

エントロピーによる判別手法の精度は、セッショングループ2のそれぞれのセッションから記録されたアクセスログをもとに計測したエントロピーをもとに比較して判別を行い測定する。

4.3 実験システム

実験システムには以下のような機能を実装しており、図4に示す流れで判別手法の精度測定を行う。

- セッションに分割する機能
 正当なアクセスを記録したアクセスログと攻撃を記録したアクセスログを読み込み、それぞれをセッションに分割する。

- セッションから特徴量を抽出する機能
 セッショングループ1の各セッションから、3.1節で述べた特徴量を特徴ベクトルとして抽出する。

- 挙動差による判別手法の精度測定を行う機能
 特徴ベクトルをもとにK-分割交差検証により判別精度を測定し、結果を出力する。

- エントロピーを計算する機能
 正当なアクセスログに記録されたアクセスログの情報をもとにエントロピーを計算する。

- エントロピーによる判別手法の精度測定を行う機能
 セッショングループ2の各セッションをエントロピーをもとに特徴量と特徴ベクトルを用いて判別精度を測定し、結果を出力する。

挙動差による判別手法を検証する機能の実装にはPythonのオープンソース機械学習ライブラリであるscikit-learnを用いた。また、機械学習の学習アルゴリズムはscikit-learnが公開している学習アルゴリズム選択チートシートを使用し、LinearSVCを選択した。

4.4 判別精度の評価

挙動差による判別手法とエントロピーによる判別手法の精度を、4.3節で用意した実験システムにより測定し、4.4.1節で説明する指標で評価する。正当なアクセスログは、情報科学アクセスログQ1からQ4の4つであるので、計4回実験を行い、それぞれの精度を測定する。また、用意したアクセスログをグループ分けした結果、表5に示すような内訳になった。

4.4.1 評価指標

判別手法の精度評価で用いる指標としてAccuracy、PrecisionおよびRecallを用いる、それぞれの値は次式によって求める。

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}
\]

Accuracy = \frac{TP + TN}{TP + FP + FN + TN}
ロピーと比較して判別を行い測定する。を、あらかじめ正当なアクセスログをもとに計算したエントロピーとして再度精度の算出を行うという処理を測る方法である。

以下のオープンソース機械学習ライブラリである

検証方法に示す流れで判別手法の精度測定を行う。

4.3 実験システム
データセットをとにループ2を認し、提案する判別手法の有効性を検証する。手法とエントロピーによる判別手法それぞれの判別精度を確

情報科
情報科
情報科
情報科
Q1 65,312 9,716 35,289
情報科
情報科
情報科
情報科
Q2 66,369 9,974 34,324
情報科
情報科
情報科
情報科
Q3 58,406 9,699 54,966
情報科
情報科
情報科
情報科
Q4 59,352 9,699 56,196
情報科
情報科
情報科
情報科
平均 59.40% 99.72% 56.22%

Precision = \frac{TP}{TP + FP}
Recall = \frac{TP}{TP + FN}

式中の TP, FP, FN, TN はそれぞれ True Positive, False Positive, False Negative, True Negative を表し、True/False は判定結果が正しかったか、Positive/Negative どちらに判定したかを表す。本研究では正当なアクセスを判別することが目的なので、正当なアクセスだと判定した場合に Positive、それ以外だと判定した場合に Negative となる。

Accuracy は判定結果全体と正解ラベルがどれくらい一致しているかを判断する指標である。また、Precision は真だと判定したものの中で実際に真であるもの割合を表し、Recall は実際に真であるものの中で判定も真であったもの割合を表す。

本実験では、アクセスを正当なものだとする誤検知を低く抑えることができるかを重視するため、Precision が高い値をとる結果が望ましい。

4.4.2 指動差による判別手法の評価結果
識別器のハイパラメータについては、損失関数をハイパラメータ、正則化項を L2 正則化、ベナルティ項 C を 100 に指定した際に精度が一番高くなった。その時の各評価指標の値を表 6 に示す。

この結果から、指動差による判別手法では情報科アクセスログ Q1 から Q4 の全てにおいて Accuracy 95%で判別できることがわかった。また、Precision は 99%となり高酵値を得ることができた。

4.4.3 エントロピーによる判別手法の評価結果
エントロピーによる判別手法でセッショングループ1と 2 を判別した際の精度結果を表 7 に示す。エントロピーによる判別手法でも Precision が平均 99.72%と高い割合で判別できることがわかった。しかし、正当なアクセスに対して厳しい条件となるので Recall は約 56%にとどまった。

4.5 考察
正当なセッション判別手法の検証実験では、Precision が約 99%、Recall が約 91%という結果になった。Precision は本実験の場合、正当だと判別したセッションのうち実際に正当なセッションであった割合を表すので、正当だと判別したセッションのうち 99%は正しく、攻撃セッションを正当なセッションだと誤検知してしまったもののが 1%であったことを示す。Recall は本実験の場合、正当なセッションのうち正しく正当なセッションだと判別できたまでの割合を表すので、正当なセッションのうち 91%を正しく判別し、9%を見逃したということを示す。この結果から、正当なセッション判別手法では、攻撃を正当なものだと誤検知の割合を低く抑えつつ、正当なセッションを高い割合で判別できるため、IDS の誤検知を軽減し正当なユーザのサービスを担保するという目的を果たすことができると考える。

また、アクセス回数 1 のセッション判別の検証実験では、Precision が約 99.72%、Recall が約 95.99%という結果になった。アクセス回数 1 のセッションは正当なセッションと攻撃セッションで挙動の差が得ることができないが、今回のようなランダムでペースを選択してアクセスするような攻撃では、ベージアクセスのエントロピーを使用することで高い Precision で正当なセッションを判別できることがわかった。

今回の実験では検証できなかったいくつかが、第 1 に、HTTP-GET Flood 攻撃緩和システムでは IDS に攻撃だと検知されたアクセスのアクセスログを用いて正当なセッション判別を行うが、今回判別する対象としたアクセスログは IDS 通していないアクセスのアクセスログであり、IDS を通した場合の精度は測定できない。

第 2 に、検疫サーバでは一定量のアクセスを受け取り、判別に使用するためのアクセスログをとるが、どれくらいのアクセスを取れば正当なセッション判別が可能か検証できていない。電子商取引で使用されるミッションクリティカルなサーバなど、短時間のサービス停止が大きな被害を及ぼすため、判別に必要な最低限のアクセス量を検証することも重要である。

また、提案した判別手法ではボットネットミュレーションの BoNeSi を使用して攻撃を再現し、攻撃の特徴を学習した BoNeSi はランダムに選択した Web ページへのアクセスをするようなボットネットの攻撃を再現しているが、ボットネットからの攻撃は、同じページに繰り返しアクセスするようなものや、あらかじめ決めた順番で何にアクセスするようなものなど様々なアクセスの仕方が考えられるため、BoNeSi の挙動とかけ離れた挙動を示す攻撃に対して判別できるか検証が必要である。

5. おわりに
本論文では、我々が行ってきた HTTP-GET Flood 攻撃緩和システムの検証実験で、正当なアクセスを判別する手法について提案した。正当なアクセスを判別するため、アクセスをセッションというまとまりに分類し、そこから人と攻撃で差が出るような挙動を示す特徴を抽出し判別に利用した。複数種類の特徴量から正当なセッションと攻撃セッションの微妙な差を発見するためその判別には機械学習を利用した。

実運用により記録されたアクセスログと HTTP-GET Flood 攻撃ミュレーションツールにより作成したアクセスログを使用して学習フェーズにおいて識別器を学習させ、交差検証により検証実験を行った。その結果、アクセス回数 2 以上のセッションを正しく評価することができた。
ジョンの場合、提案した判別手法でAccuracyが約95%という精度で判別でき、十分な有効性があることを示した。判定の困難なアクセス回数1のセッションについては、ページアクセスのエントロピーを使用することで、Recallはある程度犠牲になる高いPrecisionで判別できることがわかった。

今回は、検疫サーバで正当なアクセス判別手法に焦点を当て研究を行ったが、今後は、提案した判別手法をHTTP-GET Flooding攻撃緩和システムに組み込み、運用時に有効に機能するかや、検疫サーバでどれくらいのアクセスログをとれば十分に判別できるか検証を行う必要がある。また、本研究で使用した攻撃ツールは1種類であり、そのツールと挙動の異なる攻撃では判別できない可能性があるため、複数種類の攻撃の挙動を記録したアクセスログを作成し、判別できるか検証が必要である。

参考文献
1) 有川佑樹, 岡崎直宣, 山場久昭, 高塚佳代子, 久保田真一郎: OpenFlowによるネットワーク制御と擬陽性排除サーバを用いたDDoS攻撃緩和手法の検討、火の国情報シンポジウム2016論文集(2016)。
5) 吉田祥真, 三上烈史, 小林良太郎, 金岡晃, 加藤雅彦: 複数台のおとりマシンによるHTTP-GET Flood攻撃対策、情報科学技術フォーラム講演論文集, Vol.11, No.4, pp.207-210(2012)。
8) 小池泰輔, 梅澤猛, 大塚範高: ランダムフォレストアルゴリズムを用いたネットワーク侵入検出システムの性能解析、第76回全国大会講演論文集, pp.619-620(2014)。
10) 小宅宏明, 坂田信隆, 川口信隆, 重倉寛, 岡田健一: 機械学習によるネットワークIDSのfalse positive削減手法、情報処理学会論文誌, Vol.45, No.8, pp.2104-2112(2004)。
12) サーバーの国際化及び組織化並びに情報処理の高度化に対処するための刑法等の一部を改正する法律案、(オンライン)、入手先(http://www.moj.go.jp/content/000001552.pdf)(参照2017-01-17)。
15) Choosing the right estimator scikit-learn 0.18.1 documentation, (online), available from (http://scikit-learn.org/stable/tutorial/machine_learning_map/) (accessed 2017-01-26)。
擬陽性排除サーバを用いたHTTPフラッド攻撃緩和手法の提案

有川 佑樹 a)・久保田 真一郎 b)・山﨑 久昭 c)・岡崎 直宣 d)

A Proposal of a Mitigation Method of HTTP Flood Attacks Using a Server for Detailed Examination of Pseudo Positive Accesses

Yuki ARIKAWA, Shin-Ichiro KUBOTA, Hisaaki YAMABA, Naonobu OKAZAKI

Abstract

Typical mitigation for DDoS attack discarded legitimate user packets of at the same time as the attack packets so that the false positive problem of identifying the attacker despite the legitimate user cannot be eliminated. In this paper, we propose the system distributing accesses with OpenFlow to two types of server, a main server with allows only legitimate accesses and a sub server with allows certain attacks. The First threshold is set to eliminate any attacks, the second threshold is set to allow certain attacks. Packet determined to a attack in the second threshold is discarded. Our approach is to allow certain attacks in the second threshold despite of accesses discarded by the first threshold. This approach seems to result the number of false-positive cases decreases, and the legitimate users can succeed to use services.

Keywords: DDoS, OpenFlow, HTTP flood attack

1. はじめに

インターネットが社会基盤としての重要な役割を担う現代において、サービスを機能不全に陥らせるDDoS(Distributed Denial of Service)攻撃は大きな脅威である。この攻撃に対してファイアウォールやIDSを使用してトラフィック量で判定を行う場合、正規ユーザのパケットも判定されるトラフィックに含まれ、この攻撃は正規のトラフィックと見分けが付かない。そのため、攻撃者を支えても継続してサービスを提供できる緩和策が必要であり、研究が行われている1)2)。

しかし、既存の緩和策では、攻撃パケットと同様に正常なユーザのパケットも破棄されるため、攻撃者でないにも関わらず攻撃者と識別する擬陽性の問題を排除することができない。これは既存の緩和策が、DDoS攻撃と正常なトラフィックを判別することができないファイアウォールやIDSに依存しているためである。

そこで本論文では、DDoS攻撃であると判定する閾値を2段階に設定し、判定された結果をもとに、正当なアクセスのみを許すメインサーバと、ある程度の攻撃を許容するサブサーバとにOpenFlowにより振り分けするシステムを提案する。1段階目の閾値は厳しい攻撃判定を行うよう設定し、2段階目の閾値はある程度の攻撃を許容する設定にする。攻撃と判定されたパケットはOpenFlowにより破棄される。2段階目の閾値判定により破棄されるアクセスであっても2段階目の判定によりアクセスを許すことで、システムとしての誤検知を少しでも減らし、正当なユーザがサービスを継続して受けることができると考えている。また本論文では数あるDDoS攻撃の中でもHTTPフラッド攻撃に焦点を絞る。

この提案手法ではサブサーバに振り分けられた正常なユーザがパフォーマンスの劣化したサービスを受けることになるため、最終的にはサブサーバに振り分けられたパケットを解析し、再度メインサーバへの振り分け及び破棄を行う制御情報をOpenFlowコントローラにフィードバックする機能の実装を目指している。本論文では、その一部の機能である2段階の閾値を設定しメインサーバとサブサーバにパケットを振り分け機能の誤検知性を下げるのに有効な手段であるか検討する。

2. OpenFlow

既存研究及び本提案システムで用いるOpenFlow1)について説明する。OpenFlowはソフトウェアによってネットワークを制御する技術であるため、柔軟で自由度の高い制御機制を備えたネットワークを構築することができる。OpenFlowによってスイッチで実行できる処理の例を表1に示す。

また、パケットの条件であるマッチングルールはレイヤ1からレイヤ4までの情報を用いることができる。表2にOpenFlow version 1.0で扱うことのできる情報を示す。

OpenFlowは従来のスイッチの機能である経路制御とデータ

<table>
<thead>
<tr>
<th>表1. 处理の例</th>
</tr>
</thead>
<tbody>
<tr>
<td>パケットの条件</td>
</tr>
<tr>
<td>頭先TCPポート = 80</td>
</tr>
<tr>
<td>送信元IPアドレス = 192.168.1.10</td>
</tr>
</tbody>
</table>

a)工学専攻大学院生
b)情報システム工学科准教授
c)情報システム工学科助教
d)情報システム工学科教授
表 2. マッチングルールで使用できる情報

<table>
<thead>
<tr>
<th>レイヤ</th>
<th>拭える情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理層</td>
<td>スイッチの物理ポート番号</td>
</tr>
<tr>
<td>データリンク層</td>
<td>送信元 MAC アドレス</td>
</tr>
<tr>
<td></td>
<td>宛先 MAC アドレス</td>
</tr>
<tr>
<td></td>
<td>Ethernet タイプ</td>
</tr>
<tr>
<td>ネットワーク層</td>
<td>送信元 IP アドレス</td>
</tr>
<tr>
<td></td>
<td>宛先 IP アドレス</td>
</tr>
<tr>
<td></td>
<td>IP プロトコル</td>
</tr>
<tr>
<td></td>
<td>IP の ToS 情報</td>
</tr>
<tr>
<td>トランスポート層</td>
<td>TCP/UDP の送信元ポート番号</td>
</tr>
<tr>
<td></td>
<td>TCP/UDP の宛先ポート番号</td>
</tr>
<tr>
<td></td>
<td>VLAN ID</td>
</tr>
<tr>
<td></td>
<td>VLAN 優先度</td>
</tr>
</tbody>
</table>

図 1. OpenFlow の構成図
転送の機能を別々の機器に分離している。そのため、経路制御を担う OpenFlow コントローラとデータ転送を担う OpenFlow スイッチの２つの機器から構成される。OpenFlow コントローラは、フローテーブルに記憶したパケットの処理方法を示す情報を OpenFlow スイッチに送信することで、パケットの転送や破棄を行う。フローテーブルは OpenFlow スイッチ内のフローテーブルに登録される。

2.1 処理手順
ホスト A からホスト B へ通信する例である図 1 をもとに OpenFlow の処理手順を説明する。

(1) OpenFlow スイッチがポートから入るパケット信号を受信する。
(2) OpenFlow スイッチは処理方法を記憶しているかフローテーブルをチェックする。
(3) 処理方法を記憶してなければ OpenFlow コントローラに処理方法を問い合わせる。
(4) OpenFlow コントローラが OpenFlow スイッチにフローテーブルを送信する。
(5) フローテーブルをフローテーブルに登録する。
(6) フローテーブルに従ってパケットを処理する。

図 2. OpenFlow を用いた攻撃者遮断システムの構成図

3. DDoS 攻撃緩和システムの既存研究

3.1 OpenFlow を用いた攻撃者遮断システム
OpenFlow を用いた攻撃者遮断手法は、IDS と OpenFlow コントローラを連携させ、動的なフローテーブルを OpenFlow スイッチに登録することで攻撃者の通信を遮断する緩和策であり、実験によりサーバの応答率や応答時間の改善に有効であることが確認されている。この既存手法の処理手順を図 2 に示す。

(1) IDS が攻撃者を検知する。
(2) IDS が攻撃者 IP アドレスを OpenFlow コントローラに通知する。
(3) OpenFlow コントローラが、通知された攻撃者 IP アドレスのフローを破棄するフローテーブルを作成する。
(4) OpenFlow コントローラが OpenFlow スイッチにフローテーブルを挿入する。
(5) 攻撃者が攻撃パケットを送信する。
(6) OpenFlow スイッチが攻撃者からのフローを破棄する。

既存手法は DDoS 攻撃と判定された IP アドレスのパケットを破棄するフローテーブルを作成して攻撃パケットを排除する方法である。しかし DDoS 攻撃を IDS によってトラフィック量で判定を行う場合、正規ユーザの IP アドレスもパケット破棄の対象となってしまう。正規ユーザがサービスを利用できなくなる恐れがある。判定技術の向上ももちろろんあるが、IDS が攻撃者と正当なユーザを正確に判定できない場合でもサービスのパフォーマンスが劣化せず、誤検知率が下がるような検討が必要である。

3.2 DNS を用いた DDoS 攻撃回避システム
DNS を用いた DDoS 攻撃回避システムは、Web サーバの IP アドレス変更を行う方法を用いて、正規ユーザに影響を与えない DDoS 攻撃による被害を緩和するシステムである。正規ユーザのアクセス成功率によってシステムの有効性を評価した結果、DDoS 攻撃対し有効であることが確認されている。この既存手法の処理手順を図 3 に示す。

(1) IDS サーバが攻撃を検知する。
(2) DNS サーバ及び Web サーバに回避先 IP アドレスを報告し、回避要請をする。
(3) 要請を受けたサーバは IP アドレスの変更を行い DDoS 攻撃を回避する。
図 3. DNS を用いた DDoS 攻撃回避システムの構成図

（4）IDS サーバからの要請に従い DNS サーバは A レコードに書かれている Web サーバの IP アドレスの値を変更する。

攻撃ホストは攻撃を開始する前に攻撃先 Web サーバの IP アドレスを取得して DDoS 攻撃を開始する。しかし攻撃を IDS が検知し、Web サーバと DNS サーバに DDoS 攻撃回避を要請するため Web サーバの IP アドレスが変わり攻撃は失敗する。これに対し正規ユーザは毎回 DNS サーバに接続して IP アドレスを取得するため、Web サーバへのアクセスが成功する。以上のように DDoS 攻撃を緩和しつつ正規ユーザにサービスを提供できる。したがって、この手法では変更された IP アドレスに追従し続ける DDoS 攻撃は緩和することはできない。また、IDS の検知ルールに当てはまる攻撃パケットが一度でも通過すると具体的被害が発生していない時点で IP アドレスが変更されるため、IP アドレスの切り替え時間が全体的に増加して正規ユーザがサービスにアクセスできなくなる時間が増加してしまう。よってサービスを行うサーバの IP アドレスを変更せずに DDoS 攻撃を緩和できる対策が必要となる。

4. 提案手法

4.1 概要

本提案手法は DDoS 攻撃であると判定する閾値を 2 段階に設定し、判定された結果をもとに、正当なアクセスのみを許すメインサーバーと、ある程度の攻撃を許容できるサブサーバーとに OpenFlow により振り分け、1 段階目の閾値が厳しい攻撃判定を行うよう設定し、2 段階目の閾値はある程度の攻撃を許す設定にする。つまり 1 段階目の判定により確実に正当なユーザだと判定されるとメインサーバーにフラッシュされ、1 段階目の判定結果が再判定に影響を及ぼすことはできないが逆に 2 段階目の判定で確実に攻撃者であると判断すると同样にない場合サブサーバーにフラッシュされる。2 段階目の閾値で攻撃と判定されたパケットは破棄される。1 段階目の判定により破棄されるアクセスであっても 2 段階目の判定によりアクセスを許すことで、攻撃者であるユーザを攻撃者と識別してパケットを破棄する偽陽性の問題が緩和され、正規ユーザがサービスを継続して受けることができる。

図 4. 提案手法の構成図

4.2 提案手法の構成

提案手法の構成図を図 4 に示す。経路制御装置は経路制御とパケット転送を行う装置であり、OpenFlow コントローラ、OpenFlow スイッチ、侵入検知システムである snort から構成される。メインサーバは確実に攻撃者ではないと判断されたホストのみに通信を行う。正当な利用者へ正しいパフォーマンスのサービスを提供することを目的としている。サブサーバはメインサーバと同じサービスをユーザに提供しており、攻撃者もしくは正当な利用者がかもしれませんホストとの通信を行う。このサブサーバを用いることで、正当な利用者が攻撃者であると誤検知される偽陽性の問題を排除することを目指す。

4.3 処理手順

図 4 により処理手順を説明する。

(1) パケット受信

OpenFlow スイッチがパケットを受信すると、snort から OpenFlow コントローラへアラートが送信される。OpenFlow コントローラは送信元 IP アドレスにアラートの数をカウントする。

(2) フローエントリ挿入

OpenFlow スイッチにフローエントリを挿入する。挿入するフローエントリはアラート数によって異なる、仮の閾値を設定し、挿入するフローエントリの例を示す。

仮の閾値設定

1. 1 秒間のアラート数が 10 以下の場合は正当なユーザと判断する。
2. 1 秒間のアラート数が 11 以上 100 以下の場合は正当なユーザか攻撃者か判断できないユーザと判断する。
3. 1 秒間のアラート数が 101 以上の場合は攻撃者と判断する。

フローエントリ挿入の例

1. アラート数 < 11
メインターサーバへ転送するフローエントリを挿入
2. 10 < アラート数 < 101
サブサーバへ転送するフローエントリを挿入
3. 100 < アラート数
パケットを破棄するフローエントリを挿入

(3) パケット転送
フローエントリに従って、パケットの転送及び破棄を行う。

5. 実験計画

本章では提案手法の有効性を検証する実験の計画について説明する。

5.1 概要
提案手法の特徴は、閾値を2段階に設定することで1段階目の判定により破棄されるアクセスであっても2段階目の判定によりアクセスを許可できることであり、これにより正当なユーザがサービスを継続して受けることができると考える。よって実験では提案手法を閾値が1段階のみであるシステムと比較することで、提案手法が誤検知率を下げるのに有効であるか、また正当なユーザに対するサーバのパフォーマンスが向上するか検証する。

5.2 実験環境
実験環境を図5に示す。ホスト2台、サーバ2台、経路制御装置1台をVirtualBoxで作成し、仮想ネットワーク上で実験を行う。OpenFlow環境はryu version 3.2.6とOpen vSwitch version 2.4.0で作成し、IDSにはsnortを使用する。また、閾値が1段階のシステムはメインサーバーとサブサーバによる分散処理を行う。

5.3 実験方法
閾値が2段階の提案手法及び閾値が1段階のみのシステムに対し、HTTPフラッドとして進行している状態にしたうえで正当なユーザからhttpリクエストを送信する。そのときの誤検知率と正当なユーザに対するサーバーの応答時間の平均をそれぞれ求め、2つのシステムを比較する。

6. 考察
DDoS攻撃はファイアウォールやIDSを用いてトラフィック量で判定を行う場合、正規ユーザのパケットも判定するトラフィックに含まれ、正規のトラフィックと見分けが付かな

図5. 実験環境の構成図
Evaluation of Feature Values of Surface Electromyograms for User Authentication on Mobile Devices

Tokiyoshi KUROGI, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Tetsuro KATAYAMA, Naonobu OKAZAKI

Abstract

At the present time, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are generated by the electrical activity of muscle fibers during contraction, are detected over the skin surface. Muscle movement can be differentiated by analyzing the s-EMG. We proposed a method that uses a list of gestures as a password in the previous study. In this paper, results of experiments are presented that was carried out to investigate the performance of the method identifying gestures from s-EMG signals using support vector machines (SVM). An experiment to identify users from s-EMG signals was carried out at the same time. The performance of SVM as a classifier of our method was also discussed according to the results.

Keywords: mobile device, user authentication, shoulder surfing, s-EMG, SVM

1. はじめに

モバイル端末の既存の認証方式は覗き見耐性が十分であるとはいいえない。スマートフォンやタブレットのようなモバイル端末の普及に伴い、覗き見によって認証に必要な情報が第三者に取得され、容易に認証を破壊してしまうという問題が起きている。

この問題を解決する技術として指紋などの生体情報を用いた生体認証が注目されている。生体認証技術とは、人間の身体的特徴（生体器官）や行動的特徴（顔）を用いて本人認証を行う技術であり、バイオメトリクス認証とも言われる。具体的には、指紋、掌型、筋電位、虹彩等、行動的特徴として筆跡、リズム等が生体認証として用いられる傾向がある。

筆者の研究室では、生体情報の 1 つである表面筋電位を用いた認証手法の検討を行い、それが有望であったと確認している[2][3]。すなわち、被験者の筋電図、同一のジェスチャーの筋電図を複数回測定しても同様に認証される。した筋電波形が得られる事、同一のジェスチャーであっても、異なる被験者からは類似しない筋電波形が得られる事を確認している。

これらの既存研究では、そのジェスチャーをパスワードとして組み合わせている。ただし、測定した筋電波形図士を比較し、その筋電波形が同一のものであるか否かの判定は人間の目視で行っており、これを機械で判定する方法は検討未であった。また、実証的な実験を行う為に必要な個人認証システムのプロトタイプを実装する事も課題にあげられていた。

そこで、本研究では、1. 表面筋電位の筋電波形の最大値と最小値を特徴値とした上でジェスチャーの識別をサポートベクターマシン（以下、SVM）で行う手法の検討と2. 将来実証的な実験を行う際に用いるシステムの筋電計として、一般にも入手可能な市場のジェスチャー入力用の機器Myoが採用できるかの検討の 2 つを行った。

2. モバイル端末の個人認証の課題と対策

この節では、モバイル端末の個人認証で覗き見攻撃や録画攻撃が脅威になっている事とその対策として生
体認証が有望視されていることを説明する。
モバイル端末の個人認証として現在広く用いられているPIN認証やパターン認証等は第三者に見られた場合パスワードなどの認証情報を盗まれやすい。その結果、容易にロックを解除してしまう。このような正規ユーザの認証行為を覗き見することにより暗証番号やパスワードといった秘密情報を不正に取得する行為を覗き見攻撃と呼ぶ。
また、近年ではビデオカメラを用いて秘密情報を録画により取得し、それらの情報を計算機で解析するという録画攻撃も脅威になっている。録画攻撃の最も基本的な対策としては、他人に見られることのない環境で認証動作を行うという事が挙げられる。
しかし、我々の生活環境にはいたる所に監視カメラが設けられており、意図的でなくとも認証動作を録画されてしまい、個人情報が漏洩される可能性が否めなくなっている。覗き見を困難にさせる事、場合にも安全性の確保ができるような対策が必要であるが容易ではない[4]。
これらの攻撃への対策として、生体認証情報の用いる事が有望視されている。生体認証とは、指紋や虹彩、筋電位といった人間の生体の特徴をパスワードとして用いる認証方法である。

3.筋電位を用いた個人認証手法

3.1筋電位

生体情報の1つとして筋電位がある。筋電位は脳から送られた信号が筋線維に伝達される際に生じるものであり、神経細胞が細胞内外の電位を変化させる事で測定する事が可能で、観測された検出の変化は図1ののような筋電図として記録できる。皮膚表面で計測した筋電位のことを表面筋電位、またはs-EMG(surface electromyography)という[5]。
モバイル端末の個人認証として現在広く用いられているPIN認証やパターン認証は第三者に覗き見された場合パスワードなどの認証情報を盗まれやすい。その結果、容易にロックを解除されてしまう。このような、正規ユーザの認証行為を覗き見することにより暗証番号やパスワードといった秘密情報を不正に取得する行為を覗き見攻撃と呼ぶ。また、近年ではビデオカメラを用いて秘密情報を録画により取得し、それらの情報を計算機で解析するという録画攻撃も脅威になりつつある。録画攻撃への最も基本的な対策としては、他人に覗き見されることのない環境で認証動作を行うということが挙げられる。しかし、我々の生活環境にはいたる所に監視カメラが設けられており、意図的でなくとも認証動作を録画されてしまい、個人情報が漏洩される可能性が否めなくなっている。覗き見を困難にさせること、された場合でも安全性の確保ができるようにする対策が必要であるが容易ではない。

これらの攻撃への対策として、生体認証情報を用いることが有望視されている。生体認証とは、指紋や虹彩、筋電位といった人間の生体の特徴をパスワードとして用いる認証方法である。

3. 筋電位を用いた個人認証手法

3.1 筋電位

生体情報の1つとして筋電位がある。筋電位とは脳から送られた信号が筋線維に伝達された際に生じるものであり、神経細胞が細胞内外の電位を変化させる事で測定する事が可能であり、観測された電位の変化は図1のようなる筋電図として記録できる。皮膚表面で計測した筋電位のことを表面筋電位、またはs-EMG(surface electromyography)という。実際には、そのジェスチャー毎に得られる波形(図3)をモバイル端末上に登録する。ジェスチャーを登録した所有者が認証操作を行う時、図2のジェスチャーを行う。すると、図4に示すように、登録されている一連のジェスチャーの筋電位の波形と似た波形が測定され、これらが類似している事によって、認証が成功となる。しかし、第三者が同じジェスチャーで認証動作を行った場合は、筋電計で測定して得られた波形には個人差があるので、図5のような異なる波形が測定され、ロックを解除することができないことがある。図1. 筋電図
図2. 登録したパスワード(ジェスチャー別)
図3. 対応する筋電図
図4. 所有者が入力した認証動作を測定した波形
図5. 攻撃者が入力した認証動作を測定した波形

3.3 筋電位を用いた個人認証システムの概要

実際の認証システムを実現するためには、(1) ユーザの皮膚に接触させた電極で感知した表面筋電位を、(2) その電極と接続されている筋電計で計測し、(3) その記録された表面筋電位のデータを携帯端末に転送し、(4) 事前に端末上に登録しておくパスワード（ジェスチャー：筋電図の列）と比較、照合し、認証を行う、といったステップが必要となる。実現のイメージとしては、安価で腕時計状のウェアラブルデバイスの表面筋電計を搭載した端末と通信を可能としている筋電計が必要である。そのような機能をもつ筋電計の候補としてMyoがある。この機器が、個人認証に耐える性能の筋電波形を測定出来るのかの性能実験を行った。

5. 特徴量を用いたジェスチャー識別実験

5.1 実験で用いたジェスチャー

本研究では図6に示すA〜Gの7ジェスチャー（チョキ、親指、小指、パー、手の甲側に向けてひねる、手の平側に向けてひねる、中指と薬指と親指を2回合わせる）を用いた。

5.2 ジェスチャーの識別実験

識別実験はThalmic Labs Incの機器Myoで筋電計を用いて測定した筋電位のデータを用いた。この実験では、図6のジェスチャーB、D、Fを用いて、左手で筋電図を計測した。これらのジェスチャーを計測した筋電図のデータを用いて、SVMを使って識別を行った。実験結果は以下の通りであった。

表1. ジェスチャーの識別率

<table>
<thead>
<tr>
<th>ジェスチャー</th>
<th>B</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>識別成功数/実験回数</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>識別率（％）</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

5.3 筋電波形の特徴量の選択と実証実験用システムの開発に向けた検討

本研究では以下の2つの検討を行った。

筋電計で計測して得られた波形の識別を人間が行うのが容易であったとしても、それを利用した認証システムをモバイル端末上で実現するには、その識別を実現できる計算システムを開発しなければならない。そのためには、筋電計から取得した筋電波形からジェスチャーの特徴を的確に捉えた特徴量の抽出とその特徴量同士を比較し、2つの筋電波形が同一か否かの判定が可能となればならない。

具体的には、(1) 特徴量として筋電波形の最大値と最小値を使用し、(2) 識別ではSVMを用いる手法を検討した。次に、実証実験を行う時に必要なプロトタイプシステムを構築しようと考えており、その実験システムの筋電計としてMyoが使用できるかを検討した。

この目的には、パソコンや端末等と通信を可能としている筋電計が必要である。そのような機能をもつ筋電計の候補としてMyoがある。この機器が、個人認証に耐える性能の筋電波形を測定出来るのかの性能実験を行った。
の識別を行った。ジェスチャーB、D、F の筋電波形を人間が目視したところ、識別は可能であった。SVM によるジェスチャーの識別は各ジェスチャー5 回ずつ行ったところ、全て識別が可能であった（表 1）。

6. 筋電位を用いた個人認証システムの概要

実証実験を行う時、必要なプロトタイプシステムを構築しようと考えている。様々な環境を想定し、実際にその状況で認証が可能か否か、実験を行っていくと考えている。現在入手が容易な機器を活用した構築を考え、Thalmic Labs Inc の機器 Myo（以下、Myo）という筋電計を搭載したウェアラブルデバイスが採用できるかどうか性能評価実験を行った。

6.1 Myo

Myo は、Thalmic Labs Inc が販売している筋電計を備えているウェアラブルデバイスである（図 7）[6]。8 つのブロックが組み合わせた形状をしており、前腕部に装着して使用する。8 つのブロック状の裏面（測定する前腕に接する面）にそれぞれ筋電計が備えており、筋電図を取得する機能を有しており、測定した表面筋電図のデータを無線で接続されたパソコンや端末上のファイルに保存することが可能である。

Myo の利点としては、安価であり、現在入手が容易な機器であること、バッテリーを搭載しており駆動が可能であること、電極部分と記録・無線通信機能が一体化しており、取り扱いやすい事が挙げられる。

6.2 Myo の個人認証性能評価実験

以前に実施した筋電計 m-BioLog で測定した筋電位は個別認証に耐えうるものであるという結果であった。本節では筋電計 Myo で同様のことが可能であるかの検討を行った。Myo では個人認証システムのプロトタイプの実現も視野に入れた上で、1）同一人物が同じジェスチャーを行ったときに得られる各筋電位、2）ジェスチャー毎に類似する波形が存在するか、3）ある人物のいくつかのジェスチャーをとったときの筋電図が類似しているわけではないかを観察し、検証を行った。実験は各被験者に対して 2 回ずつ繰り返した。

6.2.1 Myo を用いた筋電位の測定

まず、2 回の検討に使用する筋電位の測定を行った。Myo を右前腕部分に装着して測定を行った。図 6 の 7 ジェスチャーの筋電図の測定を行った。被験者は宮崎大学工学部 15 名の学生である。ジェスチャーの測定は拳を軽く握った状態を初期状態とし、それぞれのジェスチャーを行った。この動作を行った時の筋電位の測定を行った。

各ジェスチャー毎に、その動作を 2 回ずつ繰り返した時の筋電位を測定し、それを 1 セットとして、同じ実験を 3 セット行った。この Myo での筋電位の測定は 2 回のジェスチャーの測定を行う毎に、機器の 8 組の電極から、同時に 8 つの筋電図を取得した。また、各電極が前腕部の同じ位置の筋電位を測定できるように筋電計 Myo を着用する際の向きを常に同じにした。Myo で複数回計測した筋電図は類似しているか、取り扱い、再度筋電計で測定した際の筋電図は類似しているのかを検証、測定を行った 3 回のうち 1 回目で Myo のあらかじめ設定した筋電図を発行し、2 回目は Myo をそのまま装着したまま筋電図の測定を行った。3 回目は 1 回目と 2 回目の測定から 1 週間の間隔をあけて測定を行った。

6.2.2 Myo で測定した筋電位を認証に用いる性能実験

同じ被験者の同じジェスチャーの波形が互いによく似ているかどうか測定した筋電位を用いて比較を行った。1 回目で測定した波形と 2 回目で測定した波形、1 週間にて測定した 3 回目の波形を実験者が検出、形状に異なり、筋電図が同一であるかを実験者の目視で判断実験を行った。

結果は Myo で測定した筋電図を比較してもジェスチャーの判別は可能であることが分かった。ただし、Myo は 1 回の測定で各ジェスチャーの 8 つの筋電図が全て類似化しているわけではないが、測定を行う度に類似している電極としていない電極があった。また、類似した波形が得られる電極がジェスチャーの波形に影響を及ぼすことが分かった。しかし、電極 8 に関しては全てのジェスチャーで類似しているという結果になった。このことから Myo を用いた筋電図の個人認証を実現することは有望であると言える。

6.2.3 Myo で測定した筋電図からのジェスチャーの予測実験

対応するジェスチャーが不明の筋電図を、それが既知の筋電図群と比較する事により、当該のジェスチャーを予測することができるかを検証実験を行った。具体的な実験に当たって宮崎大学学生 10 名の被験者に以下の実験を行った。

被験者には 6.2.1 で測定した筋電図の内、ジェスチャーB、D、E、G（バーが左方へ向けられる）の中から選択し、その筋電図を試験として提示し、それが 3 つのジェスチャーの内のどれであるかを検証を行った。正解は手の甲側に向けてひねる。

この実験で比較した筋電図は電極 1 ～ 8 全てではない、6.2.2 の実験で分かったジェスチャー毎に類似していると分かった電極 8 を用いた。この実験は各被験者に対し
て各々2回ずつ行った。結果は、10名全てが2回とも正解を答えた。以上からMyoで測定した筋電位を用いた個人認証が原理的には十分可能であると言える。

7. 考察
本研究では今回は筋電計m-BioLogで測定した筋電位のデータをSVMに機械学習させ、ジェスチャーの識別を行なった。機械学習を行う際の特徴量として筋電波形の最大値と最小値を用いた。結果は識別が可能であった。

また、今後の研究で端末に個人認証システムのプロトタイプの作成を視野に入れられた上でMyoで測定した筋電位が個人認証に耐えうるものであるかどうかの確認を行った結果有望であった。しかし、Myoで測定した電極8以外の電極も用いた上で今後、ジェスチャーの識別や個人の認証を行い、個人認証システムのプロトタイプの作成を行いたいと考えている。一例として、測定したジェスチャーDでは電極4、5、7、8で測定された筋電図の波形がお互いに類似していると判定された。ジェスチャーが不明の筋電図を与えた場合、そのジェスチャーがDであるのかという判定をする場合は、電極3、4、6、8の波形を用いれば良いと考えられる。

8. おわりに
本研究では、表面筋電位の筋電波形の最大値と最小値を特徴量とした上でジェスチャーの識別をサポートベクターマシン（以下、SVM）で行う手法の検討と2.将来実証的な実験を行う際に用いるシステムの筋電計として、Myoという機器が採用できるかの検討の2つを行った。結果どちらも有望なものであるという結果になった。

今後の課題として、個人の識別が筋電波形の大きさと最小値を特徴量とし、SVMで行う事が可能か、Myoで測定した筋電波形が現在の識別方法でジェスチャー、個人の識別が可能か、また、より良い性能の特徴量の探求に努めていた。

参考文献
[1] 神経細胞と静止膜電位,
http://www7b.biglobe.ne.jp/~homunculus/neuro/neurophysiology/S1.html
[3] 新・筋電センサMiniBioMuse-iii,
http://nagasm.org/ASL/SIGMUS0108/
https://www.myo.com/
マウストラッキングを用いたCAPTCHA方式の検討

立田 伶平 a）・山場 久昭 b）・久保田 真一郎 c）・岡崎 直宣 d）

A Study on the CAPTCHA Using Mouse Tracking

Ryohei TATSUDA, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Naonobu OKAZAKI

Abstract

CAPTCHAs, which are reverse Turing tests, are used in many websites in order to guard them from bots attacks. However, there are many methods for breaking CAPTCHAs. Relay attack is one of such methods solving CAPTCHA using human solvers. We propose a CAPTCHA using mouse tracking to resist relay attack. We used delay time that is caused by communications needed in relay attack. We constructed an experimental environment that can simulate relay attack. A series of experiments was carried out to evaluate the performance of the proposed method.

Keywords: CAPTCHA, relay attack, mouse tracking

1. はじめに

近年、無料メールサービスなどのWebサービスに対し、ボットと呼ばれる自動プログラムを用いたアカウントの大量取得や、それらを用いたSPAMメール送信などの不正行為が問題視されている。このような問題の防止を目的に、人間とボットを識別するためのCAPTCHAと呼ばれる方式が開発された1）。これは、人間には容易に解答できるがコンピュータには判断が困難である問題をユーザーに出題し、正解できたユーザーを人間と判断する技術である。例えば、代表的なCAPTCHAに文字列CAPTCHAがある。文字列CAPTCHAはノイズや歪曲を付加した文字列の画像をユーザーに提示し、その画像（以下、CAPTCHAの問題画像と呼ぶ。）に表示されている文字列を正しく答えられるかで人間かボットか判断する。しかし近年では、CAPTCHAを突破する攻撃手法が登場してきている。既に、文字認識技術やパターン分類技術の発達によって文字列CAPTCHAや画像型CAPTCHAなどの代表的なCAPTCHAは容易に突破されるようになってきており、その脆弱性が多くの研究者に指摘されている。

a）工学専攻大学院生
b）情報システム工学助教
c）情報システム工学准教授
d）情報システム工学教授

特にリレーアタックと呼ばれる攻撃手法は、インターネット上の一般ユーザーや低賃金労働者にCAPTCHAの問題画像を中継してそれを解読させる攻撃手法であり、人間がCAPTCHAの解読を行うため、プログラムを想定した対策では効果がなく、新たな対策が求められている。

そこで本論文では、リレーアタックを行った時に生じる通信の遅延時間に着目し、リレーアタックに耐性を持たせたCAPTCHA方式を提案する。提案方式は、動的なCAPTCHAであり、連続的に移動してその位置を変化させる移動オブジェクトをランダムな位置に出現する複数の妨害オブジェクトの中から認識し、それを、マウスカーソルで追跡できるか否かによってアクセスしてきている者が人間か自動プログラムかを判断する。本手法は、この動的な性質に加え、リレーアタックで生じるCAPTCHAの問題画像を中継した際の遅延を利用して、リレーアタックの防止を図っている。
2. リレーアタック

2.1 リレーアタックとは
リレーアタックは、攻撃者が正規サイトからCAPTCHAの問題画像を取得し、第三者の人間にそれを中継して解答してもらい、その解答を正規サイトに送ることでCAPTCHAを突破する手法である。CAPTCHAの問題画像の取得や第三者の中継などは、攻撃者の作成したプログラムで自動的に行われる。リレーアタックの具体的な手法には、攻撃者が運営するサイト（以下、リレーサイトと呼ぶ。）にインターネット上の一般ユーザーが訪問して来たら、正規サイトから取得してきたCAPTCHAの問題画像を提示し、リレーサイトのコンテンツを閲覧することと引き換え解答させる手法や、攻撃者が低賃金労働者を雇ってCAPTCHAの問題画像を労働者に転送し、報酬を与えて解答させる手法などがある。以降の説明では、リレーアタックに際して、CAPTCHAの解答を提供する者（インターネット上的一般ユーザーや低賃金労働者）を幇助ユーザーと呼ぶこととする。

2.2 リレーアタック対策
この節では、既存のリレーアタック対策やリレーアタックに耐性を持つCAPTCHAについて述べる。

2.2.1 IPアドレスの違いを利用した対策
鈴木等はリレーアタックの特徴、すなわち、正規サイトにアクセスするPCとリレーサイトで中継されCAPTCHAを解くPCとが異なることを利用し、リレーアタックが行われていることを検知する手法を提案している。しかし、この手法ではリレーアタックを検知するために必要なIPアドレスを正規サーバーに通知する必要がある。そのため、そのプログラムを一般ユーザーのPCにインストールしなければならない。よって、低賃金労働者を利用したリレーアタックのように、不正であることを知った上でリレーサイトにアクセスしている場合に、このプログラムをインストールしないことによって対策の回避が可能となっててしまう。

2.2.2 DCG–CAPTCHA
DCG–CAPTCHAは簡単なミニゲーム形式のCAPTCHAである。ユーザーや者が与えられた指示に従って、数値オブジェクトをマウスなどで選択し、その選択が正しければ、人間とみなされる。DCG–CAPTCHAのオブジェクトは常に移動しているので、ユーザーや者が解答を行う際のリアルタイム性を有している。ユーザーやとCAPTCHAとの間でインタラクションのタイミングを検査することでリレーアタックの検出を実現している。しかし、DCG–CAPTCHAは自動プログラムに対する耐性が低いという欠点がある。

3. 提案手法

3.1 目的と提案CAPTCHA
本研究では、リレーアタックに対する耐性を持ちながら、一般ユーザーの協力的な行為を必要とせず、プログラムによる自動化攻撃にも耐性を持つCAPTCHAを作成することを目的とする。である。

提案するCAPTCHAは、動的なCAPTCHA方式であり、図2に示すように移動する円形のオブジェクト（以下、移動オブジェクトと呼ぶ。）をマウスカーソルで追跡できるか否かで解答者が人間かボットかを判断するものである。

以下に提案CAPTCHAのリレーアタックに耐性を持つCAPTCHAの例を示す。

図3のCAPTCHAに対してリレーアタックを行ったときの通信についてのシーケンス図を示す。図3で用いている記号の意味を以下に示す。

Ox, Oy : 時間 t の移動オブジェクトの座標
Mx, My : 正規ユーザのマウスカーソルの座標
M* x, M* y : 幇助ユーザのマウスカーソルの座標
Δt1 : 中継PCから幇助ユーザにCAPTCHAのフレーム画像が送信されるまでの時間
Δt2 : 幇助ユーザから中継PCにマウスカーソルの座標が送信されるまでの時間

まず、正規ユーザが提案するCAPTCHAのサーバーにアクセスしているときの舞いを以下に示す。

(1) 時刻0の移動オブジェクトの座標（Ox0, Oy0）に移動オブジェクトが表示されている。
(2) 中継PCは、（Ox0, Oy0）に移動オブジェクトが表示されている。
(3) 幇助PCは、（Ox0, Oy0）に移動オブジェクトが表示されてからのフレーム画像を取得し、幇助ユーザに送信する。

次節にて、提案CAPTCHAのリレーアタックとプログラムによる攻撃への対応について示す。
（4） Δt_1 経った時に、支援ユーザに、(Ox_0, Oy_0)に移動オブジェクトがあるように見える。

（5） 支援ユーザは、移動オブジェクト上にマウスカーソルを置く。このとき、マウスカーソルの座標を$(M'x, M'y)$とす。この座標は、支援PCから支援ユーザに送信される。

（6） マウスカーソルの座標$(M'x, M'y)$は、①からΔt_2 経った時に、支援PCに到着する。このとき、支援PC上の移動オブジェクトの位置は座標(Ox_1, Oy_1)まで移動している。

（7） マウスカーソルの座標$(M'x, M'y)$と(Ox_1, Oy_1)のずれがと比べると、$(M'x, M'y)$と(Ox_1, Oy_1)のずれが大きくなる。

以上より、支援ユーザがアクセスした時のマウスの座標のずれより、支援ユーザがアクセスした時のずれが$\Delta t_1 + \Delta t_2$の分だけ大きくなっている。

正規アクセスと比較すると、リレーアタックでは、CAPTCHAのフレーム画像を支援ユーザに送信する処理と支援ユーザの解答を攻撃者の支援PCに送信する処理が追加されている。この追加された通信によって、支援CAPTCHAサーバーに直接アクセスしている支援PCで表示されているフレーム画像と支援ユーザのPC上で表示されているフレーム画像には、時間のずれが生じる。このずれを生み出している遅延時間が利用されてリレーアタックによるCAPTCHAの破壊を防ぐというのが提案手法の基本的な考え方である。

3.2.2 物体追跡技術への対処
提案手法のCAPTCHAでは、基本的には、移動する円形オブジェクトをマウスカーソルで追跡する解答方法をとっている。その点に着目すると、物体追跡技術を用いて、支援オブジェクトをプログラムで自動的に追跡する攻撃が考えられる。

そこで提案手法では、支援オブジェクトと同形状、大きさ、色の妨害オブジェクトを用いて、支援プログラムによる追跡が困難になるように工夫を加えた。提案するCAPTCHAは、移動オブジェクトのフレーム画像と支援オブジェクトのフレーム画像を重ねて表示する。

また、移動オブジェクトが1フレームごとに位置を更新するのと同時に複数の妨害オブジェクトがランダムに位置を更新する。

移動オブジェクトを追跡するためには、CAPTCHAのフレーム画像を解析して、支援オブジェクトを特定する必要がある。ところが、支援者が支援オブジェクトを自動追跡しようとフレーム画像を解析しようとしても、各フレーム画像は、同じ形状、色のオブジェクトがランダムに配置されているようにしか見えないので、そのため、支援オブジェクトを検出し追跡することは困難になると考えられる。

3.3 認証手順
提案するCAPTCHAを用いた認証手順を図4に示す。

提案CAPTCHAのプログラムが動作を始めると、支援オブジェクトが動き出す。その上にマウスカーソルを乗せたら追跡開始とし、解答時間の間、追跡を行う。支援オブジェクトの中心座標と支援カーソルとの距離が支援オブジェクトの半径以下であるときは追跡が成功していると呼ばれる。その期間の長さの総和を追跡成功時間とし、それが設定した閾値よりも長い場合は、解答者を正規ユーザと判断する。追跡してもらい解答時間の長さは、現在最も広く利用されている文字列CAPTCHAの解読にかかる平均所要時間は10秒程度であるため、追跡開始から10秒間とした。
4. 実装

4.1 開発環境

本CAPTCHAの開発言語にはJavaScript, CAPTCHAのサーバーはNode.jsを用いることにより, CentOS6.6上で実装した。

4.2 CAPTCHAシステムの実装

図5は、作成したCAPTCHAのフレームを抜き取ったものである。図中のスタート位置とは、CAPTCHAが開始されたときの移動オブジェクトの位置であり、現在位置とは、抜き取ったフレームでの移動オブジェクトの位置である。白線は、抜き取ったフレームまでに移動オブジェクトが移動した軌跡を表したものである。移動オブジェクトは、白線で示されているように不規則な動きをする。

図5. 実装したCAPTCHAの1フレーム

5. 実験と考察

今回は、提案CAPTCHAがリレーアタックに耐性を持つことの検証とそのユーザビリティ評価を通して、CAPTCHAとしての実用性について調査する。

5.1.1 実験目的

実装した提案CAPTCHAに対して実際にリレーアタックを行い、リレーアタックへの耐性が与えられているかを確認する。

5.1.2 実験方法

実験は、宮崎大学工学部の被験者8名に、構築した実験用サイトに、正規アクセス及びリレーアタックでそれぞれ5回ずつ提案CAPTCHAを解いてもらった。移動オブジェクトの最長追跡成功時間、最短追跡成功時間、平均追跡成功時間を表1に示す。

表1. 実験結果

<table>
<thead>
<tr>
<th></th>
<th>正規アクセス</th>
<th>リレーアタック</th>
</tr>
</thead>
<tbody>
<tr>
<td>最長追跡成功時間</td>
<td>8.8</td>
<td>2.3</td>
</tr>
<tr>
<td>最短追跡成功時間</td>
<td>4.1</td>
<td>0.1</td>
</tr>
<tr>
<td>平均追跡成功時間</td>
<td>6.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

5.2 ユーザビリティ評価

ユーザビリティ評価では、提案CAPTCHAの正答率や所要時間の測定と被験者に対するアンケート調査を行い、提案CAPTCHAの実用性を確認する。ユーザビリティ評価は、宮崎大学工学部生10名を対象に行った。正規アクセスの閾値は、ユーザビリティ評価実験で、正規アクセスした場合の最短追跡成功時間が4.1秒であることを判断する追跡成功時間の閾値を4秒に設定した。ユーザビリティ評価は、宮崎大学工学部の被験者8名に、提案CAPTCHAを3回ずつ解いてもらい、各解答の成否と解答にかかった所要時間の平均を表2に示す。

表2. 成功率と所要時間

<table>
<thead>
<tr>
<th>成功率 [%]</th>
<th>平均所要時間 [秒]</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.6%</td>
<td>13.0</td>
</tr>
</tbody>
</table>
に1点～5点の評価でアンケート回答してもらった。アンケートの質問項目を以下に示す。

1. 簡単に解けたか（簡単であれば5点）
2. 面倒だと感じたか（面倒でないなら5点）
3. CAPTCHAは、使いやすかったか（使いやすいなら5点）
4. webサービス上で使いたいか（使いたいなら5点）
5. 実際のwebサービスの場面でCAPTCHAを解くことが要求されたときに、文字列CAPTCHAと提案CAPTCHAのいずれかを選ぶことができた場合どちらを選ぶか。

被験者10人に3回ずつ解いてもらった提案CAPTCHAの成功率と平均所要時間をまとめた結果を表2に、アンケート結果について表3に示す。全ユーザーの平均正答率は、96.6%であり、平均所要時間は、13.0秒である。一般的な文字列型CAPTCHAの平均所要時間は10秒程度であるが、提案CAPTCHAは文字列型CAPTCHAと同程度の時間で解けるCAPTCHAであると考えられる。また、アンケート結果から、全体的に1点、2点の評価をした回答がないため、提案方式に大きな負担を感じた被験者はいないと考えられる。

質問(5)では、すべての被験者が文字列CAPTCHAよりも提案CAPTCHAを選択していた。これらのことから、提案CAPTCHAは実用的であるといえる。

表3. アンケート結果

<table>
<thead>
<tr>
<th></th>
<th>平均得点</th>
</tr>
</thead>
<tbody>
<tr>
<td>簡単に解けたか？</td>
<td>4.6</td>
</tr>
<tr>
<td>解くのは面倒だったか？</td>
<td>4.7</td>
</tr>
<tr>
<td>CAPTCHAは使いやすかったか？</td>
<td>4.7</td>
</tr>
<tr>
<td>Webサービス上で使いたいか？</td>
<td>4.4</td>
</tr>
</tbody>
</table>

6. まとめと今後の課題

本研究では、リレーアタックを行った時に生じる、通信の遅延による遅延時間に着目し、リレーアタックに耐性を持たせたCAPTCHAを提案した。また、提案方式のCAPTCHAを実装し、リレーアタックを模擬的に実現する実験環境を構築して、リレーアタックへの耐性の検証実験を行った。実験の結果、提案方式が実験環境の条件の下ではリレーアタックに対して耐性を持つことが可能であることを示した。また、ユーザビリティ調査を行い、提案CAPTCHAが実用的であることを確認した。

今後は、今回確認することができなかった、自動プログラムによる攻撃への耐性について検証実験を行い、提案方式が自動プログラムに対して十分な耐性をもつかどうか検討していきたい。

参考文献
2) 鈴木徳一朗、山本匠、西垣正勝: リレーアタックに耐性をもつCAPTCHAの提案, 情報処理学会研究報告. CSEC, [コンピュータセキュリティ], 2010(21), 1-8.
5) 可児潤也, 鈴木徳一郎, 上原章敬, 山本匠, 西垣正勝: コマ漫画CAPTCHA, 情報処理学会論文誌, 54(9), 2232-2243.
6) 藤田真浩, 池谷勇樹, 米山可児, 西垣正勝: SNOW NOISE CAPTCHA: 無意味な情報を利用した動画CAPTCHAの提案, 研究報告コンピュータセキュリテイ (CSEC), 2014(29), 1-7.
録画画像を用いた攻撃に耐性を持つパズル型認証方式の提案

日隈 光基*・山場 久昭*・久保田 真一郎*・岡崎 直宣*

Proposal of Puzzle Authentication Method with Video Recording Attack Resistance

Koki HINOKUMA, Hisaaki YAMABA, Shin-Ichiro KUBOTA, Naonobu OKAZAKI

Abstract

Currently, user authentication methods such as PINs, passwords and so on, are used to protect important and private data in mobile devices. However, those existing methods are not sufficiently safe against shoulder surfing attacks. Attackers can easily steal PIN codes or passwords. To prevent such attacks, the puzzle authentication method was proposed. In the method, users unlock their devices thorough solving a “puzzle.” A user drags an orb to adjacent positions, and the dragged orb swaps places with the orb already there. The authentication will succeed when all of the orbs corresponding to characters of the password are put into the designated positions. The special feature of this method is that users have fun while they unlock their devices. However, it was also known that the method has several drawbacks. First, the method is not strong enough against brute-force attacks. Next, the correct answer is easily revealed by shooting the authenticated screen using a video camera. In this study, several improvements were made to the method to overcome brute-force attacks and video recording attacks. The improved authentication method was implemented and experiments for evaluation were carried out.

Keywords: mobile security, shoulder-surfing, puzzle

1. はじめに

近年,スマートフォンやタブレットなどのモバイル端末が広く普及している。また、クラウドコンピューティングにより、スマートフォンからでもインターネット上に保存しているデータを閲覧、編集できるようになってきており、モバイル端末から取得できる情報量は増加してきている。そのため、今まで以上にモバイル端末のセキュリティの向上が期待される。しかし、現在スマートフォンやタブレットなどのモバイル端末で使用されているパスワード認証、PIN認証、パターンロック認証などの画面ロック機能は第三者の覗き見攻撃への対策が十分ではない。この問題を解決するために、様々な手法が提案されている。覗き見攻撃に耐性を持つ認証方式として、従来のパスワード方式による認証にパズルの要素を組み込み、パスワードを指定した位置に揃える、パズル型認証方式がある。この認証方式は楽しく認証することができ、ユーザビリティに配慮した認証方式である。しかし、この認証方式にはランダムな入力により偶然認証を突破する確率が十分に低く保てないことや、ビデオカメラ等を利用した認証画面の録画画像を用いた攻撃（録画攻撃）に対して脆弱であることなどの現状がある。

本研究では、この認証方式に改良を加え、これらの問題点を改善することを目的とする。そこで、認証時の入力を複数回に分割することにより入力情報の候補を増加させ、偶然認証突破確率を低くし、またビデオカメラ利用認証画面の録画画像を用いた情報提示手法を用いることにより、録画攻撃に対して耐性を持つ新たな認証方式を提案する。

さらに、提案方式をAndroid端末上に実装し、録画攻撃に対する耐性などの提案方式の評価を行う。また、ユーザビリティの評価を行うためにアンケートを実施する。

2. パズル型認証方式

2.1. パズル型認証方式の概要

パズル型認証方式とは、従来のパスワード方式による認証に位置とパズルの要素を組み込み、パスワードを指定した位置に揃えることにより認証を行うもの。この認証方式は覗き見攻撃への耐性を持つ。
この方式の認証画面には、0から9の数値、および、赤、青、緑、黄、紫、白の16個のアイコンが4×4の16個のマスにランダムに配置されている（図1(a)）。ユーザは、事前に登録しておいた4つのアイコン（パスアイコン）を、事前に登録しておいた4つの位置（パスロケーション）に移動させれば、認証は成功となる（図1(c)）。図1では、説明のために、パスアイコンを赤色の文字で、パスロケーションに配置されているマスを橙色で示している。ただし、各パスアイコンを移動させるパスロケーションは決まっておらず、どのパスロケーションにどのパスアイコンを移動させても認証は成功となる（図1(d)）。

ユーザは、移动させたいアイコンにタッチし、そのままドラッグすることにより、上下左右斜めのいずれの方向へも、そのアイコンを移動させることができる。その際、移動先の位置に元からあったアイコンと、場所が入れ替わる。さらに、指を離さずにアイコンを移動させ続けることにより、複数のアイコンの位置がまとめて変化することになる。このため、ユーザがパスアイコンをパスロケーションに移動させる際に入、直接ドラッグするアイコンは、必ずしもパスアイコンでなくても良い。

このことから、認証画面を見き見えても、パスアイコンとパスロケーションがどれであるかを特定することは困難である。なおこの手法では、最初にアイコンを触ったら、認証が完了するまでは指を離さないという「一筆書き」で認証を行うものとする（図1(b)）。

図1. 認証の例

2.2. パズル型認証方式の問題点

既存のパズル型認証方式では、以下の配置再現法や出現回数推定法による録画攻撃に対して耐性が低いという問題がある。

・配置再現法：認証成功時のアイコンの配置を記録し、攻撃者がその通りにアイコンの配置を再現することで認証が成功してしまう攻撃である。既存手法では、パスロケーションとパスアイコンを固定しているため、認証情報であるパスアイコンとパスロケーションが分からなくても、認証成功時のアイコンの配置さえ記録していれば、それを同じ配置を再現するだけで、認証を成功させることができる。

・出現回数推定法：マス毎のアイコンの出現回数を数えることにより、パスロケーションとパスアイコンを推定する攻撃である。既存手法では、パスロケーションとパスアイコンを固定しているため、パスアイコンはパスロケーションの位置以外には出現しない。そのため、多数の認証成功時の画面があれば、4つのパスアイコンだけが現れる4つのパスロケーションと、残る12のアイコンだけが現れる12のロケーションを見分けることができる。この攻撃は録画した認証画像の数が多ければ多いほど、成功の可能性が上がると考えられる。

また、既存手法がランダムな入力により偶然に認証が突破される確率は、4×4×4×4×4×4=4120である。これは、PIN方式などの、広く用いられている認証方式に比べて高いという問題もある。

3. 提案手法

3.1 目標と設計方針

本研究では、前述した“認証に耐性を持つパズル型認証方式”を改良し、録画攻撃に対して耐性を持つ認証方式を提案する。提案方式の設計目標を以下に示す。

・録画攻撃への耐性
録画攻撃とは、ビデオカメラ等を利用して認証画面を録画した画像を用いた攻撃のことである。複数回、認証画面の録画をされても認証情報が盗み取られないことを目標とする。

・偶然認証突破確率の低減
偶然認証突破確率は、ランダムな入力により偶然に認証を突破する確率である。1/10,000を強度の目標とする。1/10,000の強度は広く用いられているPIN方式の1進数4桁に相当する。

ユーザビリティ
ユーザに入力の記憶負荷がかからない認証方式を目指す。

3.2 録画画像を用いた攻撃に耐性を持つパズル型認証方式の提案

提案手法では、既存手法の問題点を緩和するために、2つの新たな改良を行う。一つ目は、認証画面の数を増やし、認証時の入力を複数回に分割することである。2つ目は、パスロケーションの位置が認証の度にランダムに決まり、それを、ビデオカメラに記録されにくい情報提示手法を用いてユーザに伝えることで、録画攻撃に対して耐性を持つようにすることである。以下に、2つの新たな改良の
詳細を示す。

1つ目は、認証画面の数を増やし、認証時の入力を複数回に分割することである。これは、入力する入力情報の候補を増加させることで、ランダムな入力により偶然に認証を突破する確率を小さくし、偶然認証突破確率を低減することと、画面で入力するパスワードを減らすことにより認証を簡単にすることを目的とする。提案手法では、事前に登録した4箇所のパスロケーションに4個のパスアイコンを移動させる操作を1画面で行っていたが、提案手法では、認証画面を2画面に増やす代わりに、1画面あたりのパスアイコンとパスロケーションの数を減らすことで、覚えるパスアイコンとパスロケーションの数を増やさずに認証画面を増やすことができるようになった（図2）。

始めの認証画面で認証を受けた後、続いて2画面目の認証画面に移し、2度目の認証を受けた後で認証は完了となる。既存手法と提案手法の、偶然認証突破確率を示す。既存手法は、2.2で示したように、1/1820である。これに対し提案手法では、事前にk個のパスアイコンとk個のパスロケーションを2セット登録し、画像がm×n並んだ2画面で認証を行う。今回は既存手法との比較をするため、k=2、m=n=4とする。この時の、偶然認証突破確率は、

\[(2!)^2(16!)(15!^2) = 1/14400\]

となり、認証画面を増やすことで偶然認証突破確率を低減する。さらには、画面あたりのパスロケーションに動かすパスアイコンの数を減らすことにより、パスワード入力の過程でアイコンを動かす範囲が広くなり、動作の選択肢が増えることにより、認証が容易になる。一方、認証画面を増やすことにより、認証時間が長くなる可能性があり、これがユーザビリティに与える影響を調査する必要がある。

2つ目は、パスロケーションの位置が認証の度にランダムなことを、ビデオカメラに記録されにくい情報提示手法を用いてユーザに伝え、録画攻撃に対する耐性を持つようにすることである。ここでは、ビデオカメラに記録されにくい情報提示手法として、端末のイレブレーショーシステム機能を想定するが、イヤホン等を利用している場合には音による情報提示なども考えられる。この改良により、録画攻撃に対する耐性が向上するとともに、ユーザが長時間に入力で必要のある情報を減らして、ユーザの記憶負荷を軽減することが期待できる。既存手法ではパスロケーションはパスアイコンと同様に事前に登録しておくが、ユーザはそのパスロケーションを覚えていないため、提案手法ではパスロケーションは認証のたびにランダムに決定されるため、これを長時間に入力しておく必要がない。

次に、情報提示手法を用いてパスロケーションをユーザに伝える方法を説明する。認証画面に表示されたm×nのマスに配置されたアイコンを順になぞり、あるマスを通ったとき端末が振動する。その振動したマスがその回の認証におけるパスロケーションとなる。パスロケーションが認証のたびにランダムに決まるため、2.2で述べた配置再現法や出現回数推定法による録画攻撃を防ぐことができる。以上のように、提案手法では長期に入力で覚えておく必要のある情報がパスアイコンのみになること、ユーザの記憶負荷を軽減することができ、一方で、認証するパスロケーションの数が多い場合、認証の度に記憶すべき情報が多くなり、短期的な記憶負荷が大きくなるという問題がある。これは、画面を1回ずつだけ覚えないといった、ユーザビリティの低下につながる可能性がある。

そこで、この問題の解決策として、既存手法である事前にパスロケーションを設定する方法と、上記の振動を使ってパスロケーションを設定する方法の両方を使ったハイブリットの方法を合わせて提案する。

ハイブリットの方式は、2種類のパスロケーションを使用することで、図3のように、振動するパスロケーションを減らし、長期記憶負荷と短期記憶負荷のバランスを図ることができる。一方で、ハイブリットの方式では、事前に登録するパスロケーションの位置が固定であるため、全てのパスロケーションを振動により決定する方式に比べて録画攻撃への耐性が低下してしまうことと考えられる。

図2. 認証時の入力の分割。

図3. ハイブリットの方式のパスロケーションの確認。
4. 実装と評価

4.1 実装
提案方式を実現させるために、実装にはJava言語を用い、開発ソフトウェアはEclipseを使用した。動作検証を行った端末のOSはAndroid OS 4.4.2である。図4にパスロケーションとパスアイコンの設定画面、認証画面を示す。

4.1.1 パスアイコンとパスロケーションの設定
図4(a)にパスアイコンの設定画面を示す。パスアイコンを登録する場合は、ユーザは登録したいアイコンをタッチする。「OK」ボタンを押すことで、図4(b)へ移行する。図4(b)にパスロケーションの設定画面を示す。パスロケーションを登録する場合は、ユーザは登録したい位置のマスをタッチする。以上の操作を2セット行うことで、画面のあるパスアイコンとパスロケーションを設定する。

4.1.2 認証
図4(c)に認証画面を示す。認証の度に端末がランダムにパスロケーションの位置を決め、そのマスを指が通過したときに端末が振動する機能を実装している。また、音をされた場合に振動音を判別しにくいようにするために、ダミー音として振動音と類似の音を、振動しない場合にも出力する機能を実装している。この場合、全てのマスは指でなぞった際にダミー音が鳴るようにした。「OK」ボタンを押すことで認証の成否を判定し、成功の場合、認証は完了となる。

4.2 認証時間と認証成功率の調査
既存手法と提案手法のそれぞれの認証時間、認証成功率を調査した。被験者として宮崎大学工学部生8人に実験を選ばせる。実験方法について説明し、実装したシステムで数回練習してもらい、その後実験を行った。本実験では、既存手法と提案手法の認証方式をそれぞれ5回ずつ認証を行ってもらい、認証の成否を記録した。実験で使用した提案手法の認証方式は、事前に各パスアイコンと1個のパスロケーションを2セット登録し、アイコンが4×4のマスに並んだ2画面で認証を行う。また、認証画面は1マス振動するマスがあり、そのマスがもう一つのパスロケーションとなる。

実験結果を表1に示す。認証成功率は、5回の認証のうち何回認証が成功したかを示している。表より、提案手法の認証成功率は既存手法と比べて17.5ポイント低下了。認証成功率低下の原因は、端末が振動してパスロケーションの位置をユーザに伝える際、ユーザが画面を早くなっても、どうのマスで端末が振動したかがわかりにくいということが挙げられる。認証時間は、認証全体に要する時間で、認証画面が表示されてから認証が成功するまでの時間を調査したものである。表1より、提案手法の認証時間は既存手法と比べて11.24秒増加した。認証時間増加の原因は、提案手法は画面をなぞって振動するマスを確かめる作業を2画面行う必要があるため、その時間が余計にかかることを挙げられる。また、認証を失敗した場合、提案手法は再び2画面分の認証を行う必要があることも認証時間の増加の原因となっている。

4.3 ユーザビリティに対する評価
提案方式が既存手法と比べて使いやすさが損なわれていないかを確認するために、宮崎大学工学部生8人に実験の後アンケートを実施した。提案手法で追加された機能のユーザビリティを確認するための、以下の3項目の評価について述べる。

(1) 振動機能によるパスロケーションの発見は容易か
(2) 認証画面の数が増えれば使いやすいか
(3) 認証画面の数が増えると認証情報を覚えるのは容易か

(1)の項目では、過半数が「容易」「やや容易」と回答しており、「少し難しい」という回答もあれば、「難しい」という回答はなかった。過半数がポジティブな回答をしていくことから、振動機能でパスロケーションが決まる方法によりユーザビリティを大幅に低下させる可能性は少ないと言える。

(2)の項目では、半数が「どちらでもない」と回答しており、「少し使いにくい」という回答よりも「使いやすい」「やや使いやすい」という回答が多かった。半数が「どちらでもない」と回答していることから、認証画面の数を増やすことによるユーザビリティへの影響は少ないと言える。

(3)の項目では、半数が「どちらでもない」と回答しており、「容易」「少し難しい」という回答が同程度あった。半数が「どちらでもない」と回答していることから、認証画面の数を増やすことによるユーザの記憶負荷への影響
4.4 録画攻撃への耐性に対する評価

先ず、バパスロケーションを事前に設定せず、振動によりバパスロケーションの位置が認証の度にランダムに決まる方法のみを使用した認証の場合、2.2で述べた配置推定法で録画アルゴリズムに対しては、バパスロケーションの位置が認証のたびにランダムに変化することで防ぐことができる。また、2.2で述べた配置再現法による録画攻撃に対しては、バパスロケーションの位置が認証のたびにランダムに変化することで防ぐことができる。よって、この方法を使用した場合、録画された回数に関係なく上記の録画攻撃に対して安全であると言える。

次に、ハイブリットの方式を使用した認証の場合、配置再現法による録画攻撃に対しては、位置が固定のバパスロケーションがあるため、好きな方向に隠すことが可能である。しかし、出現回数推定法による録画攻撃に対しては、位置が固定のバパスロケーションがあるため、認証のたびにランダムに変化することで防ぐことができ、また、出現回数推定法による録画攻撃に対しては、位置が固定のバパスロケーションと固定のパスロケーションをセットした場合、配置再現法による録画攻撃に対しては、ランダムに変化するバパスロケーションがあるため、録画攻撃に対しては、位置が固定のバパスロケーションもあるため、録画攻撃に対しては、位置が固定のバパスロケーションがあるため、録画攻撃に対しては、パスロケーションの位置が認証のたびにランダムに変化することで防ぐことができる。よって、この方法を使用した場合、録画された回数に関係なく上記の録画攻撃に対して安全であると言える。

参考文献

テストケース自動生成ツール BWDM の現状と課題

立山 博基 a) ・片山 徹郎 b)

Current Status and Issues of Test Cases Automatic Generation Tool BWDM

Hiroki TACHIYAMA, Tetsuro KATAYAMA

Abstract

For software development using Formal Methods, we have developed a prototype of the boundary value test case automatic generation tool BWDM. The main two topics of our tool are (1) automatically generation of test cases and (2) boundary value analysis. Our tool improves the efficiency of software testing process in using VDM++ that is one of the Formal Methods. In this research, we show the structure of our tool, implemented functions, application example, evaluation of the usefulness, relative research, and future issues.

Keywords: Software Testing, Boundary Value Analysis, Formal Methods, VDM++

1. はじめに

ソフトウェアへバグが混入する原因の 1 つとして、上流工程のソフトウェア設計段階において、自然言語を一般的に用いていることが挙げられる。自然言語は元来、曖昧さを含んでいる。そのため、プログラマが、仕様書上の表記を、仕様の作成者が本来意図していない意味で捉えてしまうことが起こる。実装者が、本来の仕様書の意図から外れた認識に基づいて実装を行った結果、ソフトウェアにバグが混入されてしまう。

この問題を解決するための 1 つの方法として、形式手法 (Formal Methods) を用いた上流工程でのソフトウェア設計が挙げられる。形式手法を用いた開発では、まず、数理論理学を基盤とした形式仕様記述言語 (Formal Specification Language) により、開発対象が持つ特性を仕様として記述する。数理論理学を基にしているため、自然言語を用いた開発と異なり、定理証明や機械的な検査を用いて、記述した内容が正しいことを数学的に証明することが可能である。つまり、自然言語の持つ曖昧さを排除した、厳密な仕様を作成することが可能となる。

一方で、自然言語もしくは形式手法を用いた設計、いずれにしても、実装を行った後は、作成したソフトウェアに対してテストを行う必要がある。テストを行うためには、テストケースの設計作業が必要であるが、人手によるテストケースの設計には手間と時間がかかる。そのため、テストケースの設計作業を効率よく行うことで、テスト工程を効率化できる。また、バグが潜む箇所に的を絞ったテストケースの設計を行うことも、テスト実施の効率化のために重要である。

そこで本研究では、形式手法を用いたソフトウェア開発における、テスト工程の作業効率化を目的として、境界値テストケース自動生成ツール BWDM の試作を行った。本稿では、この BWDM の現状と課題について述べる。BWDM は、VDM++仕様を対象として境界値分析を行い、境界値テストを実施するためのテストケースを自動生成する。本稿では、「境界値テストを行うためのテストケース」の意味で、「境界値テストケース」という呼称を用いる。境界値テストケースは、入力データとそれに対する期待出力データによって構成する。入力データとして、VDM仕様中の閾値定義に対して境界値分析を行い、抽出した境界値、及び級数型の最小値と最大値を用いる。
境界値テストケース自動生成ツール BWDM

本章では、本研究で試作したツール BWDM (Boundary Value/Vienna Development Method) について説明する。ツール名の BWDM は Boundary Value と Vienna Development Method の頭文字を意味する。BWDM は、VDM++仕様において記述された関数定義の境界値分析を行い、境界値テストケースを自動生成する。

図 1 に BWDM の処理の流れを示す。BWDM は、入力データ生成部と期待出力データ生成部の 2 つの処理部で構成されている。なお、期待出力データ生成には、本研究室の西川、吉川らが開発した VDM++仕様を用いたデシジョンテーブル生成支援ツールで生成したデシジョンテーブルを利用している。

2 境界値テストケース自動生成ツール BWDM

入力データ生成部と期待出力データ生成部の 2 つの処理部で構成されている。なお、期待出力データ生成には、本研究室の西川、吉川らが開発した VDM++仕様を用いたデシジョンテーブル生成支援ツールで生成したデシジョンテーブルを利用している。

図 1 に BWDM の処理の流れを示す。BWDM は、入力データ生成部と期待出力データ生成部の 2 つの処理部で構成されている。なお、期待出力データ生成には、本研究室の西川、吉川らが開発した VDM++仕様を用いたデシジョンテーブル生成支援ツールで生成したデシジョンテーブルを利用している。

2.1 入力データ生成部の処理の流れ

入力データ生成部の処理の流れを、図 2 に示す。入力データ生成部では、入力として VDM++仕様が記述されたファイルを受け取り、境界値テストケースに入力データを生成する。生成した入力データは、期待出力データ生成部で用いられる。

図 2 に入力データ生成部の処理の流れを示す。入力データ生成部では、入力として VDM++仕様が記述されたファイルを受け取り、境界値テストケースに入力データを生成する。生成した入力データは、期待出力データ生成部で用いられる。

2.2 期待出力データ生成部の処理の流れ

期待出力データ生成部の処理の流れを、図 3 に示す。期待出力データ生成部では、入力データ生成部で生成した入力データを、VDM++仕様の中の関数に入力した場合の期待出

図 3 に期待出力データ生成部の処理の流れを示す。期待出力データ生成部では、入力データ生成部で生成した入力データを、VDM++仕様の中の関数に入力した場合の期待出

適用例

本稿で試作した BWDM が正しく動作することを検証するために、不等式と剰余式が混在した仕様を適用した。

図 4 に不等式と剰余式が混在した仕様を示す。不等式と剰余式が混在した仕様を、図 4 に示す。この仕様は、VDM++仕様を用いて、第一引数が偶数であるか否かと、第二引数が正の数か負の数であるかを判定している。

適用例

不等式と剰余式が混在した仕様を、図 4 に示す。この仕様は、VDM++仕様を用いて、第一引数が偶数であるか否かと、第二引数が正の数か負の数であるかを判定している。
テストケース自動生成ツール BWDM の現状と課題

4. 考察

本研究では、形式手法を用いたソフトウェア開発におけるテスト工程の効率化を目的として、境界値テストケース自動生成ツール BWDM の作成を行った。BWDM は、テストケース自動生成ツールである。ユーザーは、事前に仕様を記述した関数を境界値分析し、生成した境界値テーブルからテストケースを自動生成することが可能である。なお、本研究で試作した BWDM は、吉川らが開発した、システムのバグの発生しやすい箇所を対象にした境界値テストケース設計ツールである。

4.1 有用性の評価

BWDM の有用性について考察するために、if 条件式の数が 3 件のソフトウェアのテストケースを生成するまでの時間を計測する。図1は、時間計測結果である。3 件のソフトウェアに条件式の数が 3 件の対象ソフトウェアを、BWDM によるテストケース自動生成ツールの適用で、テストケースを生成するまでの時間を計測する。図1は、時間計測結果である。3 件のソフトウェアに条件式の数が 3 件の対象ソフトウェアを、BWDM によるテストケース自動生成ツールの適用で、テストケースを生成するまでの時間を計測する。

各条件式内の真値を条件式、仕様、仕様から実装したソフトウェアに条件式の数が 3 件の対象ソフトウェアを、BWDM によるテストケース自動生成ツールの適用で、テストケースを生成するまでの時間を計測する。図1は、時間計測結果である。3 件のソフトウェアに条件式の数が 3 件の対象ソフトウェアを、BWDM によるテストケース自動生成ツールの適用で、テストケースを生成するまでの時間を計測する。

図5. 不等式と剰余式が混在する仕様から生成したテストケース

図4の仕様を BWDM に適用した結果、生成したテストケースを、図5に示す。

図4中の仕様の引数 arg1 から生成する境界値は、\(natMin-1, natMin, natMax, natMax+1, 1, 2, 3\)である。また、引数 arg2 から生成する境界値は、\(intMin-1, intMin, intMax, intMax+1, -1, 0\)である。BWDM は、これらの変数それぞれの境界値の組み合わせ全体を入力データとして生成する。よって、この仕様から生成するテストケースは 7×6 = 42 件である。図5から、テストケースは No.1から No.42 までの生成結果を確認できる。BWDM は、生成された不等式条件式の数が 3 件の対象ソフトウェアで、正しくテストケースを生成していることがわかる。すなわち、「VDM++ 仕様から境界値を正しく抽出していること」と「入力データと期待出力データを正しく境界値テストケースとして出力していること」を確認できる。

下記の表1 に示す。実際に関数が取り得る状態の数は、この数字より少ない。そこで、実行時間の平均を取った。なお、計測した時間は、BWDM を入力として VDM++ 仕様とデシジョンテーブルを用いて、テストケースを生成するまでの時間である。VDM++ 仕様やデシジョンテーブルを用意する時間は、今回の実験では考慮していない。

それぞれ仕様毎の結果は、仕様1と仕様2が0.5秒未満、仕様3が0.6秒未満である。各仕様毎のデシジョンテーブル上の規則数（デシジョンテーブルの列数）はそれぞれ、仕様1が32、仕様2が1024、仕様3が1048576である。これらは、if 条件式内の真偽値によって、関数が取り得る状態の数を表す。仕様内に事例条件の制約条件が記述されている場合、実際に関数が取り得る状態の数は、この数字より少なくなる。しかし、最大でこれだけの状態を取り得る関数に対し、入力によるテストケースの設計を行うことは、手間と時間がかかる。

それに対して BWDM は、条件数15までの仕様であれば、数秒で境界値テストケースを自動生成することが可能である。以上のことから、VDM++ 仕様から実装したソフトウェアをテストする際に、BWDM は有用であると言える。

| 表1. テストケース生成にかかった時間 |
|-----------------|-----------------|-----------------|
| | 仕様1 | 仕様2 | 仕様3 |
| 1回目 | 325 | 316 | 6277 |
| 2回目 | 283 | 389 | 5321 |
| 3回目 | 500 | 371 | 6236 |
| 4回目 | 291 | 334 | 5070 |
| 5回目 | 269 | 371 | 5700 |
| 平均 | 334 | 356 | 5720 |
if(a mod 5 = 0) then
 if(a > 92) then
 “95, 100, 105,”... 未実行
 else
 “... 80, 85, 90” ... 5の場合実行
 else
 “others” ... 4, 6, 92, 93の場合実行
現状抽出するテストデータ: 4, 5, 6, 92, 93

図5. 不等式と剰余式が混在する仕様から生成したテストケース

4.2 既存の研究との比較

VDM++仕様からテストケースを自動生成法に関する研究の1つに、馬場氏の研究がある。馬場氏の研究では、VDM仕様記述からコーナーケースに対するテストを行うための、テストドライバの雛形の作成を行うツールを開発した。形式手法を用いたソフトウェア開発におけるプロセスの中、単体テストにおけるテストを支援する。

馬場氏のツールは、現状、VDM-SL仕様内の操作定義をテストケース作成の対象としている。そのため、VDM++仕様を対象に、関数定義からテストケース作成するBWDMとは異なる。また、馬場氏のツールから出力されるテストケースは、入力データとして記述内の条件式を表示するものである。これに対して、BWDMは条件式から生成した、具体的な数値の入力データを確認することが可能である。そのため、BWDMの出力を使ってそのままテストを実行できるが、BWDMの利点であるといえる。

また、VDM++仕様記述をテストするためのテストケース自動生成ツールとして、TOBIASで、TOBIASに組み込まれたテストツールには、テストケースを自動生成する。テストツールはテスト番号及び、テストケースの正規表現を用いて、出力するテストケースを定義するものである。

TOBIASとBWDMは、どちらもVDM++を用いたソフトウェア開発のテスト段階を支援する。TOBIASは、VDM++で記述された仕様のものそのものをテスト支援を行う。これに対して、BWDMはVDM++で記述された仕様から実際に実装を行ったソフトウェアへのテストを支援する点で、異なっている。

5 BWDMの課題

BWDMの実装や考察を行う中で明らかになった、BWDMの課題を以下に示す。

- 仕様記述上に現れない境界値への対応
 仕様記述上に具体的な数値としては現れないが、複数の条件式が関係し合うことによって発生する境界値があり、現状のBWDMはそれらを入力データとして生成できない。

表2. 図6の出力と満たすべきif条件式

<table>
<thead>
<tr>
<th>出力</th>
<th>満たすべきif条件式</th>
</tr>
</thead>
<tbody>
<tr>
<td>“95, 100, 105”</td>
<td>a mod 5 = 0 and a > 92</td>
</tr>
<tr>
<td>“... 80, 85, 90”</td>
<td>a mod 5 = 0 and a <= 92</td>
</tr>
<tr>
<td>“others”</td>
<td>a mod 5 != 0</td>
</tr>
</tbody>
</table>

- BWDMの適用可能範囲の拡大
 現状、BWDMは、関数定義内のif条件式の不等式と剰余式のみに対応しており、if条件式に複数の変数が存在する場合、境界値の抽出を行うことができない。また、引数に関しては、整数型にのみ対応しており、かつ、引数個数が2個以下でないと、VDM++仕様を適用できない。条件式の抽出の際は、andとorで繋がった複合条件式を単純な条件式へと分解する処理を行っていない。これにより、適用可能なVDM++仕様の範囲に制限がある。

- さまざまな環境への対応
 現状のBWDMの型境界値生成機能は、実際の開発に用いられる多様な環境（バージョンや開発言語）に対応していない。

- デシジョンテーブル生成支援ツールとの依存関係
 BWDMは現状、テストケース生成に必要なデシジョンテーブルの生成にデシジョンテーブル生成支援ツールを用いているため、依存関係が発生している。

これらのうち、仕様記述上に現れない境界値への対応について、具体的な解決策を示す。図6に、実際に問題が起こるif式の一例を示す。この例では、if式がネスト構造をとったり、a mod 5 = 0という条件式を持つif式の処理中でさらにa <= 92という条件を判定している。現状のBWDMの入力データ生成処理では、これら2つのif条件式に対して境界値分析を行い、入力データとして4, 5, 6, 92, 93を生成する。しかし、これら2つの入力データのみの場合、3行目の“95, 100, 105”が実行されないため、図6のif式中の全ての出力をテストすることができない。

この問題を解決するためにBWDMでは、現状のif条件式からの入力データ生成に加え、各出力行について、その行を実行するために満たすべきif条件式を満たす整数値を入力データとして生成する処理を追加する。

表2に、図6において各出力行とその行に至るまでに満たすべきif条件式を示す。変数aについて、a mod 5 = 0かつa > 92、a mod 5 = 0かつa <= 92、a mod 5 != 0がそれぞれ真となるような整数値3つを入力データとして生成する。

以上の処理をBWDMに実装することで、if式中の全ての出力に対するテストケース生成が可能になる。
6 おわりに

本研究では、形式手法を用いたソフトウェア開発におけるテスト効率化を目的として、VDM++仕様を対象とする境界値分析を基にしたテストケース自動生成ツールBWDMの試作を行った。適用例として、不等式と剰余式の混在したVDM++仕様を適用した結果、VDM++仕様から境界値を正しく抽出していることを確認した。また、入力データと期待出力データを正しく境界値テストケースとして出力していることを確認した。さらに、BWDMが正しく動作することを確認した。さらに、VDM++仕様を基にしたテスト設計、及びテスト案を行うことによって、生産性の向上、ならびに、開発したソフトウェアの高品質化も見込まれる。以下に、今後の課題を示す。

● 仕様記述上に現れない境界値の対応
● BWDMの適用範囲の拡大
● さまざまな環境への対応
● デシジョンテーブル生成支援ツールとの依存関係

参考文献

2) 荒木啓二郎, プログラム仕様記述論, オーム社, 2002年
3) 吉川祐文, 片山徹郎, VDM++を用いたデシジョンテーブルツールの改良, 宮崎大学工学部 情報システム工学科 平成25年度卒業論文, 2014年
4) 西川聖太, 片山徹郎, VDM++を用いたデシジョンテーブル生成支援ツールについて, 平成25年度 電機関係学会九州支部連合大会, 2013年
変数名に着目したリファクタリング支援ツール MCC の現状と課題

田上 諭 a) ・片山 徹郎 b)

Current Status and Issues of Refactoring Support Tool MCC
Foucsing on the Naming of Variables

Satoshi TANOUE, Tetsuro KATAYAMA

Abstract

This research has implemented a prototype of refactoring support tool MCC(Make Clean Coder) which focuses on the naming of variables. This prototype helps to describe a clean code by static analysis for the source code written in C language. And, it can help to reduce factors that prevent programmers understanding the source code when they modify it by pointing out improper variable names. We applied some source codes written in C language to the prototype, and confirmed that it works properly. By using this prototype, because it can reduce reduction of time to understand the source code, programmers can shorten the coding time, lower the possibility of embedded bugs, and decrease in the time required to add functions. In this paper, we describe the current status and issues of MCC.

Keywords: Static Analysis, Refactoring, Clean Code, Variable Name

1. はじめに

近年、ICTの進化とともに社会における情報システムの担う役割が増加している。そのため、システム障害やソフトウェア不具合がもたらす経済的、社会的影響は計り知れないものとなっている。このような背景から、高品質なソフトウェアが求められるようになった。

ソフトウェアの品質改善・維持のための方法としてリファクタリングがある。リファクタリングは、ソフトウェアの外部的振る舞いを保ったまま、ソースコードがより分かりやすくなるように変更することである。ソースコードに分かりにくい変数名があると、どのような処理をしているのか分かりにくくなる。その影響により、ソースコードを修正する際に必要な処理を消してしまったり、意図された使用用途とは違うように変数や関数を使ってしまい、バグ混入させることがある。

そこで本研究では、コードの品質改善の支援を目的として、リファクタリング支援ツール MCC(Make Clean Coder)を試作した。本稿では、この MCC の現状と課題について述べる。MCC は、C 言語で書かれたソースコードに対して静的解析を行い、変数名の命名に着目したクリーンコードの作成支援を行うツールである。MCC は、命名が適切でない変数名を指摘できる。

なお本研究において、命名が適切でない変数名とは、変数名が 1 文字である場合や、変数名が英字に存在しないものである。辞書データには、実験用に公開されている辞書であるデジ蔵 Web サービスを利用する。MCC によって指摘された変数名を修正していくことにより、コードを修正する際の理解の妨げになる要因を減少させることができる。これにより、ソースコードを理解するための時間が減少し、コーディング時間の短縮、バグ混入の可能性の減少、機能追加に必要な時間が縮むことになる。

2. MCC の外観

MCC の外観を図 1 に示す。MCC はメニューバー、編集エリア、表示エリアから構成されている。以降、それぞれ説明する。

2.1 メニューバー

MCC のユーザーは、MCC の機能をメニューバーからメニューから選択することによって利用できる。メニューバーがメニューバーの「ファイル(F)」をクリックすると、ファイルメニューを表示する。ファイルメニューバーから、下記に示す 2 つの機能を利用できる。

- ファイルを開く
- ファイルを保存する

a) 工学専攻 機械・情報コース大学院生
b) 情報システム工学科准教授
ユーザーがメニューの「編集(E)」をクリックすると、編集メニューを表示する。ユーザーは、編集メニューから、下記に示す2つの機能を利用できる。

1. 編集エリアをクリアする。
2. 表示エリアをクリアする。

ユーザーがメニューの「実行(R)」をクリックすると、実行メニューを表示する。ユーザーは、実行メニューから、下記に示す1つの機能を利用できる。

1. 変数名を解析

2.2 編集エリア

編集エリアは、ソースコードを編集できるエリアである。ユーザーは、ファイルメニューから「ファイルを開く」をクリックすると、MCCは編集エリアにファイルの内容を表示する。編集エリアでは、簡易的なエディタ機能がある。

2.3 表示エリア

表示エリアは、静的解析した結果を表示するエリアである。ユーザーが、ファイルメニューから「ファイルを開く」をクリックすると、MCCは変数名解析した結果を表示エリアに表示する。

3. MCCの機能

MCCは以下の7つの機能をもつ。

1. ファイルを開く
2. ファイルを保存
3. 変数名を解析
4. 編集エリアをクリア
5. 表示エリアをクリア

MCCの機能の1つである「変数名を解析」について説明する。変数名を解析機能では、ソースコードの変数宣言部を対象にして、変数名を静的解析する。変数名が辞書に存在しないものや1文字であれば不適切な変数名だと判断し、表示エリアに「行番号:変数名~から変数名の役割が推測できません。変数名変更してください」と警告を表示エリアに表示する。変数名がスネークケースやキャメルケースを用いた複合語の場合は、元になっている単語それぞれを辞書で検索する。それぞれの単語が辞書に存在しない場合や1文字である場合は、不適切な変数名と判断し「行番号:変数名~から変数名が変更できません。変数名変更してください」と警告を表示エリアに表示する。

4. 実装

MCCの機能の1つである「変数名を解析」は、ソースコードに存在する変数名を抽出し、その後、変数名が適切かどうかを判定する。変数名を抽出するための方法及び変数名が適切かどうかの判断の方法について説明する。

4.1 変数名の抽出

ソースコードからの変数名の抽出には、構文解析器を用いる。構文解析器の作成には、JavaCCを使用する。JavaCCはEBNF(Extended Backus–Naur Form)と似た文法で文法ファイルを記述すると、その文法ファイルから構文解析を行うJavaコードを生成できる。MCCが変数名を抽出するために利用している構文解析器のEBNFの記述を、図2に示す。このEBNFをJavaCCで記述し、アクションを追加することによって変数名が抽出できる。
4.2 変数名の命名が適切かどうかの判断
変数名の命名が適切であるかは、辞書を用いて判断する。変数名が辞書に存在しない場合は、命名が適切でないとする。また変数名が1文字の場合は、辞書検索をせずに不適切な変数名とする。辞書検索には、デジ蔵 Web サービスを利用する。デジ蔵 Web サービスを用いた辞書検索の例として、name の検索を示す。MCC ではリクエスト URL として、
http://public.dejizo.jp/NetDicV09.asmx/SearchDicItemLite?Dic=EJdict&Word=name&Scope=HEADWORD&Match=EXACT&Merge=AND&Prof=XHTML&PageSize=20&PageIndex=0 を使用している。リクエストパラメータとして、Dic に EJdict、Word に name、Scope に HEADWORD、Match に EXACT、Merge に AND、Prof に XHTML、PageSize に 20、PageIndex に 0 を割り当てる。“name”を検索し、得られた結果の XML ファイルを、図 3 に示す。Java の XMLParser を用いてこの XML ファイルを解析し、TotalHitCount の値を取得する。TotalHitCount は、検索した単語が辞書にいくつ存在しているかを示している。2 以上である場合、辞書に複数存在している。単語が 0 である場合、辞書に存在していない。TotalHitCount の値によって、辞書に登録されているかどうかが分かる。

図 3. リクエスト URL にアクセスした結果得られた XML ファイル

5. 適用例
MCC の機能の一つである、「変数名を解析」が正しく動作することを検証するために、C 言語で書かれたソースコードの例に適用する。MCC で解析した実行結果の一部を、図 4 に示す。編集エリアの 41 行目は、変数名が r_num[50]となっている。これは、r は辞書に存在しているが、1 文字であり、num は辞書に存在しないため命名が適切でないと判断し「41:変数名 r_num[50]の r、num から役割推測できません。変数名を変更してください」と警告を表示エリアに表示している。

図 4. MCC の実行結果の一部

同様に編集エリアの 42、45、46、47、48、49、50 行目も辞書に登録されていない文字があるので、「変数名一か

6. 考察
MCC の有用性と、関連研究について考察する。

6.1 有用性
本論文で試作した MCC は、C 言語で書かれたソースコードを読み込み、静的解析を行うことができる。静的解析では、変数名に対して、適切に命名されているか辞書を用いて判断できる。これにより、辞書に存在しない単語がどこにあるのかを簡単に見つけることができる。さらに、スネークケースやキャメルケースの場合、複合語のどの部分が辞書に存在するのかを判断できる。よって、これらの機能により、1 文字で命名された変数名や、辞書
に存在しない単語の発見ができる。また、ソースコードを縮小し保存できる。

これらの機能を持つ MCC を利用することによって、コードを修正する際の理解の妨げになる要因を減少させられる。これにより理解にかかる時間を少なくでき、コーディング時間の短縮、バグ混入の可能性の減少、機能追加に必要な時間の減少が図れる。

6.2 関連研究

C 言語の静的解析ツールは、多くの研究及び開発が行われている。

Splint は、セキュリティの脆弱さとプログラミングのミスを修正するために、C 言語のプログラムを静的にチェックするためのツールである。 Splint は未使用の宣言、型の不整合、定義の前での使用、到達不可能コード、戻り値の無視、リターンが無い実行パス、無限ループの可能性といった lint チェックを行う。

AdLint は、ソースコード中の信頼性や移植性に欠ける部分について警告メッセージを出力し、同時に、さまざまな品質メトリクスを測定することができる。品質メトリクスとして、ファイル内の文の数や、関数内の文の数、goto文の数といったものを測定できる。

これに対して、今回試作した MCC は、辞書を使用して変数名が適切に命名されているかどうかについて判断でき、変数名が適切でないものを指摘できる。

7. MCC の課題

MCC の実装を及び考察を行う上で、明らかになった課題について述べる。

● 対応していない変数名がある。

関数名変数、構造体で定義された変数名を解析できない。これらの変数名は MCC が利用している構文解析器では、変数名の抽出できていないため、変数名の解析ができない。これらの変数名の抽出ができるように、構文解析器に構文を追加する必要がある。現在は、JavaCC を用いて構文解析器を作成しているが、JavaCC と同じパーサージェネレータである ANTLR を用いて構文解析器を作成しているが、それを利用した構文解析器を作成することにより、変数名の抽出ができるようになる。

● 命名が適切でない変数名がある。

関数名の命名が適切かどうかについては、判断する事ができない。これは、MCC が利用している構文解析器では、関数名の抽出ができないためである。変数名の問題と同様に、ANTLR に存在する C 言語の文法ファイルを利用し、構文解析器を作成することにより、関数名の抽出ができるようになる。

8. おわりに

本研究では、コードの品質改善の支援を目的として、リファクタリング支援ツール MCC を試作した。MCC は C 言語で書かれたソースコードを読み込み、静的解析を行う。静的解析では、変数名が適切に命名されているかを検出して判断する。変数名が適切でない場合は、その変数名のある行番号と変数名を表示し警告する。加えて MCC はソースコードの編集機能を備えている。

MCC に C 言語で書かれたソースコードの例を適用する事によって、MCC が正しく動作することを確認した。MCC は、命名が適切でない変数名を指摘できる。命名が適切でない変数名とは、辞書に存在しない単語で構成されている変数名や、1 文字で存在する変数名である。MCC によって指摘された変数名を修正していくことにより、コードを修正する際の理解の妨げになる要因を減少させることができる。これにより、ソースコードを理解するための時間が減少し、コーディング時間の短縮、バグ混入の可能性の減少、機能追加に必要な時間が図れる。今後は 7 章で述べた課題に対応していく。

参考文献

4) JavaCC: JavaCC Home, https://javacc.java.net/
例外処理を含むJavaプログラムへの適用を目的としたデータ遷移可視化ツールTFVISの拡張

佐藤 拓弥a)・片山 徹郎b)

Improvement of TFVIS(Transitions and Flow Visualization) for Applying Java Programs Including Exception Handling

Takuya SATO, Tetsuro KATAYAMA

Abstract

It takes much time in debugging process. To find bugs effectively, it’s important to understand the dynamic behavior. To support understanding the dynamic behavior of the program, we have developed TFVIS(transitions and flow visualization) for Java programs. It provides visualization of data transitions and data flow. It also provides another feature which can show the data transitions with arrows. But it visualizes only some control structures and expression. Therefore, we newly corresponds to Exception Handling which is one of characteristics in Java. This improves the usefulness of TFVIS as a tool to support the understanding of the dynamic behavior of Java programs.

Keywords: Debugging, Visualization of program, dynamic analysis, Exception-handling, Java

1. はじめに

ソフトウェアの開発工程において、デバッグは手間のかかる工程である1)。効率よくプログラムの欠陥を特定するためには、プログラムの動的な挙動を理解することが重要である。しかし、プログラムの動的な挙動は、一般的に不可視であるため、把握することが困難である2,3)。

この問題を解決するため、我々の研究室でJavaプログラムの動的な挙動を可視化するツールTFVISを開発した4)。

TFVISは、データ遷移可視化と実行フロー可視化によって、プログラム実行時の挙動把握を支援する。TFVISの可視化により、欠陥を含んだプログラムの実行時の挙動把握を容易にし、プログラムが含む欠陥の特定を支援する。また、他の機能として、データ遷移を矢印を用いて示すことができる。これにより、プログラムの不具合から欠陥の特定を容易にする。しかし、TFVISは一部の制御構造や式に対応しており、有用性が高いとは言えない。

そこで本稿では、未対応の制御構造の一つである、例外処理を含むJavaプログラムへの適用を目的とした拡張を行う。具体的には、Try Catch文を含むプログラムを可視化できるように拡張を行う。これにより、TFVISのJavaプログラム可視化ツールとしての有用性の向上を目指す。

a)工学専攻機械・情報系コース大学院生
b)情報システム工学科准教授

図1. TFVISの外観

2. TFVIS

図1に、TFVISの外観を示す。TFVISはソースコードからプログラムの構造を解析した構造情報と、実行時の情報に基づいて、データ遷移図を生成する。データ遷移図は、プログラム実行時の挙動を詳細に表す図である。

また、ユーザが、データ遷移図上で変数の不審な値を発見した場合に、データ遷移線を活用することによって、不審な値を生成した原因の特定が容易になる。データ遷移線は、データ遷移を可視化する機能である。

TFVISはプログラム全体の流れを、UMLのシーケンス図5)を基にした実行フロー図によって可視化する。これにより、各クラスのメソッドの使用状況や、メソッド呼び出しの関係を表す。
図2に、TFVISの構造を示す。TFVISは、解析部と可視化部から成る。また、解析部は、構造解析部、プローブファイル生成部、動的解析部から成る。

構造解析部では、プログラムの構造の解析を行い、解析結果を構造情報としてファイルに出力する。構造情報は、可視化部での図表の作成に用いる。構造解析部によって、ソースコードの各行で起こるイベントを取得する。イベントとは、可視化の基準となる特定の処理であり、各イベントはイベント種別の値を持つ。

プローブファイル生成部では、構造情報を基に、対象ソースコードにプローブを埋め込んだプローブファイルを生成する。プローブは、プログラム実行時の挙動の情報を出力する。また、プローブにはいくつか種類があり、各コードで起きるイベントごとに挿入するプローブが変わる。

動的解析部は、プローブファイルから、実行時の挙動を解析し、解析結果を実行情報として出力する。具体的には、ソースコードにプローブを埋め込んだプローブファイルをコンパイルし実行することで、プローブが出力する実行情報を取得し、実行情報ファイルに出力する。

可視化部は、解析部が出力する構造情報と実行情報を基に、可視化を行う。

3. TFVISの拡張

本章では、Try Catch文への対応のために行った拡張について述べる。初め、対応のために行った各部の拡張について述べる。次に、改良後のTFVISのデータの流れについて述べる。

3.1 各部の拡張点

Try Catch文への対応のために行った拡張は以下のとおりである。

- 構造解析部の新たなイベント種別の値の定義
- プローブファイル生成部のTry Catch文に対するプローブの挿入
- 可視化部のTry Catch文のイベントに対する可視化

各拡張の詳細について、以下で述べる。

3.1.1 構造解析部の新たなイベント種別の値の定義

構造解析部において、Try Catch文に対し出力するイベント種別の値を新たに定義する。

新たに定義したイベント種別の値は、Tryブロック開始の値(380)、Tryブロック終了の値(382)、Catchブロック開始の値(390)、Catchブロック終了の値(392)である。

3.1.2 プローブファイル生成部のTry Catch文に対する新たなプローブの定義

プローブファイル生成部において、Try Catch文のイベントに対して挿入するプローブを新たに定義する。

Tryブロックのイベント用のプローブを、Try処理検出プローブとする。このプローブは、実行時のインスタンスのID、メソッドID、メソッド実行番号、行番号を引数とする。そして、可視化で用いるTryイベントID(380)、インスタンスID、メソッドID、メソッド実行番号、行番号を、実行情報ファイルに出力する。

同様に、Catchブロックのイベント用のプローブを、Catch処理検出プローブとする。このプローブは、実行時のインスタンスのID、メソッドID、メソッド実行番号、行番号を引数とする。そして、可視化で用いるCatchイベントID(390)、インスタンスID、メソッドID、メソッド実行番号、行番号を、実行情報ファイルに出力する。

3.1.3 プローブファイル生成部のTry Catch文に対するプローブの挿入

プローブファイル生成部において、Try Catch文のイベントに応じて新たに定義したプローブを挿入する。

Tryブロック開始のイベントを読み込んだ場合、Tryブロック開始からTryブロック終了までの全ての行の直前に、Try処理検出プローブを挿入する。このときプローブが得る行番号の値は、直後の行の行番号である。また、Catchブロック開始のイベントを読み込んだ場合、直後の行にCatch処理検出プローブを挿入する。

ループ中にCatchブロックを実行する場合、ループから抜ける処理が存在する。このような処理に対応するために、メソッド開始の行の直後にループ中かどうかを示すboolean型の変数"isLoop"の値を挿入する。そして、ループ中であれば、"isLoop"がtrueになるように変更を行った。また、Catchブロック終了の行の直前に、"isLoop"がtrueであれば、既存のループ回数検出プローブとループ処理終了検出プローブを実行するif文を挿入する。
3.1.4 可視化部のTry Catch文のイベントに対する可視化
例外処理のイベントの発生に対し、データ遷移図の直前の実行箇所に赤色で“Catch”と記述したボックスを配置する。また、例外処理の発生箇所と実行箇所を結ぶ赤色の矢印を記述する。

3.2 改良後のデータの流れ
拡張後のTFVISの解析部と可視化部における、詳細なデータの流れについて、以下で述べる。

3.2.1 解析部のデータの流れ
図3に、拡張後のTFVISに、Try Catch文を含むプログラムを適用した際のデータの流れを示す。

最初に、構造解析部の拡張によって、Try Catch文についてのイベントを取得する。図3から、構造情報ファイルがTryブロック開始の値(380)、Tryブロック終了の値(382)、Catchブロック開始の値(390)、Catchブロック終了の値(392)を持っていることが分かる。

次に、構造解析部で取得したTry Catch文についてのイベントによって、プローブファイル生成部が新たに定義したプローブを挿入する。図3から、Tryブロックの全ての行の直前にTry処理検出プローブを、Catchブロック開始の行の直後にCatch処理検出プローブを挿入していることが分かる。また、ループ中であれば、ループ回数検出ブロックとループ処理検出ブロックを実行するif文を挿入していることもわかる。

最後に、プローブを埋め込んだプローブファイルを動的解析部で実行することで、実行情報を取得する。

3.2.1 可視化部の流れ
図4に、拡張後のTFVISに、Try Catch文を含むプログラムを適用した際の可視化の流れを示す。

構造情報に基づき、実行フロー図とデータ遷移図上のソースコードを描画する。また、実行情報に基づき、データ遷移図を描画する。

図4. 拡張後のTFVISの可視化の流れ
可視化部は、CatchイベントIDを含む実行情報を読み込んだ場合、可視化部はCatchイベントの発生箇所を例外処理実行箇所として、その直前の実行箇所を例外処理発生箇所として保持する。そして、例外処理実行箇所に赤色で“Catch”と記述したボックスを、例外処理発生箇所から例外処理実行箇所まで赤色の矢印を描画する。

4. 適用例
本稿では、未対応の制御構造の一つである、例外処理を含むJavaプログラムへの適用を目的とした拡張を行った。適用例として、Javaで記述した「在庫管理プログラム」を適用し、各構文を含むメソッドを正しく可視化することを示す。

図5に、Try Catch文を含む、SearchInfoメソッドを可視化したデータ遷移図を示す。このメソッドは、「ID」を入力として、その「ID」を持つ在庫の「ID」、「名前」、「在庫数」、「単価」を表示するメソッドである。今回作成した在庫は3つのみのため、3つの在庫のインスタンスを作成し、リストに格納した。このときユーザが「ID」を3と入力したと仮定すると、リストの4番目のインスタンスから、リストの4番目のインスタンスが「IndexOutOfBoundsException」という例外が発生する。図4から、リストを参照する行に“Catch”のプローブと、このプローブから、発生した例外処理の行までの赤色の矢印を表示しており、データ遷移図で例外処理の発生を正しく可視化していることがわかる。

5. 考察
本稿では、未対応の制御構造の一つである、例外処理を含むJavaプログラムへの適用を目的とした拡張を行った。具体的には、Try Catch文を含むプログラムを可視化できるように拡張を行った。本稿では、初めてTFVISの拡張の評価を述べる。次に、関連研究について述べる。最後に、TFVISの課題について述べる。
5.1 評価
既存の TFVIS では、Try Catch 文を含むプログラムを適用した場合、コンパイルエラーが発生し、可視化を行うことができなかった。

Try Catch 文を含むプログラムを可視化するため、初めに、構造解析部において、Try Catch 文に対して新たに定義したイベント種別の値を用いることでイベントを取得する拡張を行った。

次に、プローブファイル生成部において、Try Catch 文についてのイベントに対して、新たに定義した Try Catch 文の実行時の情報を出力するプローブを挿入する拡張を行った。

最後に、可視化部において、Catch イベントに対して、直前の実行に赤色で"Catch"と記述したボックスを描画し、例外処理の発生箇所と実行箇所を結ぶ赤色の矢印を描画する拡張を行った。

以上の拡張から、既存の TFVIS では可視化できなかった Try Catch 文を含むプログラムを、拡張後の TFVIS は可視化できる。このことから、Try Catch 文への対応により、TFVIS の実用性が向上したと言える。

5.2 関連研究
以下の TFVIS との関連研究との比較を述べる。

● ブレイクポイントデバッグ
ブレイクポイントは、最も多用されているデバッグ支援手法の一つである。ブレイクポイントを用いたデバッグでは、プログラムの実行を任意の箇所で停止し、停止した時点での各変数の値などを、プログラムの実行状況を確認することができる。

ブレイクポイントデバッグに用いられるブレイクポイントは、ブレイクポイントを設定する箇所の選定が難しいという問題点が存在する。プログラムの実行を停止する箇所の選定が適当であるかどうかが、ユーザの知識と経験が必要である。

これに比べて TFVIS は、ユーザが欲する情報を保持するメソッドを選択するだけで必要な情報を得ることができ、ユーザの能力に依存せずに使用できるという点で優れているといえる。

さらに、TFVIS による可視化では、メソッドやプログラム全体の流れを俯瞰することができる。また、データ遷移線を活用することで、変数同士の依存関係を把握することができる。これらの機能から、ブレイクポイントによるデバッグに比べ、ある変数がどのような経緯で作られたのか調べることができる、という点で優れているといえる。

● JIVE
JIVE7) (Java Interactive Visualization Environment) は、Java プログラムの実行を可視化するツールである。

JIVE は、実行時の処理から UML のオブジェクト図とシーケンス図を生成する機能を持つ。また、クエリーによる問い合わせに対応しており、例えば、「メソッド“func”が返り値に NULL を返すのはどこか」といった問い合わせが可能である。問い合わせで発見した処理は、シーケンス図上でハイライトされ、プログラム実行時の挙動把握を支援する。

JIVE と TFVIS を比較した場合、JIVE には、データ遷移のような変数同士の依存関係を示す機能はない。変数更新の問い合わせが可能であるが、データ遷移のような依存関係を調べる場合には、繰り返し問い合わせを行う必要がある。そのため、不適切な値を見つけた際に、その原因を探るといった作業には、TFVIS がより効果的であるといえる。

5.3 TFVIS の課題
以下の TFVIS の課題について述べる。
TFVISが有効化を行うためには、読み込む対象のプログラムが終了するまで待たなければならない。また、有効化を行うためには、いくつかの手順を踏まなければならない。一回の有効化を行うのに、1-2分の時間がかかってしまう。

6. おわりに

本稿では、未対応の制御構造の一つである、例外処理を含むJavaプログラムへの適用を目的とした拡張を行った。

TFVISは、プログラム実行時の挙動をデータ遷移可視化と実行フロー可視化によってユーザに示す。

TFVISは、別のプログラムの実行時の挙動把握が容易になり、欠陥を効率的に特定できるようになる。

TFVISは、既存のTFVISでは可視化できないプログラムが存在する。Javaプログラムが持つ基本的な構文を含むプログラムが可視化できないことは有用性に欠けることを意味している。

TFVISのJavaプログラム可視化ツールとしての有用性が向上したと言える。

今後の課題を以下に示す。

・レスポンスの遅さ
・入力待ち状態の発生を含むプログラムへの対応
・問い合わせ機能の実装
・マルチスレッドプログラムへの対応

今後の課題を以下に示す。

参考文献

Improving Software Development in Business Operation Effectively Approached by CMMI

Hnin Thandar Tun\(^a\), Tetsuro KATAYAMA\(^b\), Kunihito YAMAMORI\(^c\), Khine Khine Oo\(^d\)

Email: \{hnin, kat\}@earth.cs.miyazaki-u.ac.jp, yamamori@cs.miyazaki-u.ac.jp, k2khine@gmail.com

Abstract

Software process improvement is a technical standard for the computer software development organizations and related to the business management functions. The research will generate software design and process improvement by using metric plan that satisfies the requirement of Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI) which will meet for business operation smoothly to achieve targets. CMMI has defined a metric plan and used to improve business process goals and provide guidance for quality processes. A brief introduction of the Goal Question Metric (GQM) approach to goals and practices will used to define process and metrics. The Metric Program framework that is used in this paper to generate the metric plan is described followed by a complete Metrics Plan which includes GQM Analysis, Metric Definition, Data Collection, Data Analysis and Reporting and Monitoring. In this paper, we will generate suggestive business goals effectively and also operate all of business functionality work scope or project area to achieve the goals. We will analyze previous review data and senior level management defined goals based on previous data. So our system by using metric plan will come out suggestive goals and monitor performance all of goals or related area.

Keywords: CMMI, GQM, Project Monitoring and Control, Process and Product Quality Assurance, Key Process Area, Metric Analysis

1. INTRODUCTION

Development of improving software process involves both managerial and technical decisions, so we have to improve project management, such as planning, monitoring and control projects and support to process and product quality assurance. It is still difficult to determine which mechanisms are useful to control large software development projects. Software processes and products improvements would have to be planned and monitored starting from strategic level to the daily organization daily operation.

Nowadays, we know the fact that software process improvement of measurement helps us to better understand, evaluate and control the processes, products and software projects from the perspective of evaluating, tracking, forecasting, controlling and understanding. A good measurement process can provide business to make better and timelier decisions to achieve success in software systems. The efficient way to improve any software process is to measure specific attributes of the process, develop a set of related metrics based on these attributes of the process and then use these metrics to provide indicators that will lead to improvement strategy.

The purpose of the software measure is to improve the software process. The Software Engineering Institute (SEI) initiated a study for determining the capabilities of software contractors in the mid-1980s. The result of this capability assessment was the Capability Maturity Model for Software (CMM)\(^1\). There is other Capability Maturity Model Integration (CMMI) model provide guidance to use when developing processes. The actual processes used in a business operation depend on many factors, including application domains and used organizations structure and size\(^2\). The key processes of CMMI which are necessary in order to support on starting business effective process improvement, needs management, system design and design implementation and needs monitoring and control of business process capability for daily activities\(^3\).

CMMI model contains many Key Process Areas (KPA) which describes generic and specific goals, generic and specific practices based on GQM method that could be applied capability of production companies. A specific goals applies to the process area and addresses the unique characteristics that describe what must be implemented to satisfy the process area.

\(^a\) Master Student Double Degree Program, Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki and University of Computer Studies, Yangon.

\(^b\) Associate Professor, Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki.

\(^c\) Professor, Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki.

\(^d\) Associate Professor, Faculty of Information Science, University of Computer Studies, Yangon.
A specific practice is an activity that is considered important in achieving the associated specific goal. However, the CMMI recognizes that the specific practice is the goal rather than the way that goal is reached55. The GQM metric approach to process and metric was developed by Baillie and Weiss56 as a technique for identifying meaningful metrics for any part of the software process. It has approved to be a particularly effective approach to selecting and implementing metrics.

On the other hand, software development initiatives are not always linked to a clear contribution to business goals and another problem is that software improvement strategies, such as only CMMI is not directly linked to generating business value. In this paper, we will support to senior management to define goals for future target with automatic suggestion goals based on focusing resource which is measurable index by CMMI. So, the suggestive goals come out by calculating business operational resources functionality. That’s why we need to defined process and identify unit of metric and how to link operative process and also consider of functional operation step by step at limited timeframe. Therefore, this paper presents a process model in business operation for improving software development using metric method. It defines the measurement of business performance and goals and evaluate the future target of suggestive goals to achieve the capability schedule per all units daily, weekly, and quarterly and monthly with related all stakeholders. At the end of procedure, the report will review the numerical indexes of milestone graph.

This paper is organized section as follows. Section 2 provides the overview of the related works and Section 3 presents the process model of CMMI and applying the GQM approach. Section 4 describes the application of business operation procedure by using above method. Finally, conclusion and future work are outlined in Section 5.

2. RELATED WORK

Before introducing the improvement plans and control process and products in companies, a guidance of the developing process or improving process of an organization should be established. This fact is integrated the measurement and process based methods to the development has in the current standard and methods for process maturity and improvement such as CMMI. The ideal of the improving process for development has been discussed in details in technical report by CMMI-DEV Version 1.353. By using the CMMI model, we can control the process models of capability and we can improve the process areas of the maturity levels. According to the improving software process, Goal Question Metric (GQM)57 method supports to the software measurement for business driven quality improvement approach very well; however, the measurement is not supported the metrics-based but goal based. The researchers provide two basic approaches to software process improvement, CMM and SPICE58. They must be driven the organization’s goals, attributes and experiences, however, need to support by measurements in order to quantify the improvements. Rini and Paul proposed the effort measurement support to software products using GQM method59. They applied the GQM measurement for quality and process improvement.

Nevertheless, from our research point of view, we will define the process model for the developing process is restricted to provide guidance to use when developing processes. In this paper, we want to generate software design on launching business effectively and efficient approached by CMMI and we will use metric plan supported by the maturity levels of CMMI. The metric plan is defined the GQM method to suggest goals for future plan of business operation. Furthermore, we will be continued the goals of product improvement of project monitoring and control through to the process improvement.

3. SOFTWARE DEVELOPMENT PROCESS MODEL

This research is based on conceptual framework of the CMMI that provides for the software development process improvement in business framework operation in which includes models, components and defined process area or projects.

In order to generate the operational support to the software design on software development business effectively and efficient and also simulate the standardization to all of business area functionality. Based on the business nature, we will define all of business functional area identification and team charter developed in the defined phase to achieve the goals. According to the defined phase, we present the scope of the metric identification in which includes data collection, data analysis and data reporting and the metric plan is approached by the Goal Question Metric (GQM) method for business process software development.

3.1 Capability Maturity Model Integration (CMMI)

Capability Maturity Model Integration (CMMI) is the software process improvement approach to the organization’s performance. It was enhanced by Software Engineering Institute (SEI) at Carnegie Mellon University11, 20. This model allows the organization and senior management to interpret and adapt it in different situations according to the specific needs, organizational goals, objective and projects of business operation. CMMI model can help the process
improvement goals and is designed and generated from the CMMI framework that provides guidance for quality processes and product development. The CMMI model include specific and generic practices, specific and generic goals, process areas, capability levels and maturity levels, staged and continuous representation.

In order to perform the maturity levels of CMMI in which include Initial, Managed, Defined, Quantitatively Managed and Optimizing. In this paper, we will use the maturity level 2 of CMMI. It is performed by process planned and the accordance of the execution policy, suitable resources are available, controlled outputs are produced to promote stakeholders and the process is reviewed and evaluated at the project level. The research provides about the most important process areas of maturity level 2 that include Project Monitoring and Control that is supported by Process and Product Quality Assurance.

3.2 Applying Goal Question Metric (GQM) Approach to CMMI

CMMI model applied the Goal Question Metric that is an approach of process metrics in software development processes. It has approved that is an effective approach to selecting and applying metrics and business goals for future plan[9]. This paper defines the measures for specific goals and specific practices of Project Monitoring and Control and Process and Product Quality Assurance which are the process areas in level 2 of CMMI maturity model.

The GQM paradigm is used to modify in Software Process Improvement (SPI) in Software Engineering Institute (SEI). GQM approach develops a set of measurement goals for aspects of the software process and product quality and drives questions that defines those goals as completely as possible in a quantifiable way, identifies the measures of progress that need to be collected to answer the questions, and tracks process and product conformance to the goals. The measurement plan specifies who collects the data required by the GQM plan how the data is collected and when the data is collected[10]. Measurement goals may be defined for any object, for a variety of reasons, with respect to various models of quality. It has three levels of measurement system, such as (1) conceptual level, (2) operation level and (3) quantitative level.

In measurement numbers or symbols are assigned to attributes of selected entities in the real world in such a way to characterize the attributes by some defined rules. Measurement is important three main activities: understanding, controlling and improvement. We use measurements to assess goals achievement, to determine status according to plans, to gain understanding of processes, products, environments and resources, to establish principles for comparisons with future assessments and follow improvement efforts.

The main measurement objective is to monitor the performance of software process. Software measurement is now in a status in which terminologies, methods and principles are still being defined and combined. We should not look forward to find quantitative laws that are mostly valid and applicable, and have the same accuracy and precisions as the laws of physics, for instance. As a result, the identification of universally valid and applicable measures may be long term and ideal research goal, which cannot be achieved in the closer future.

For achieving goal, we have got out own motivation and objective such that if our objectives are achieved then the specific goals are satisfied automatically. Therefore, we generated process metrics by CMMI to the software development of the organization’s performance.

4. APPLICATION RESULTS ON BUSINESS OPERATION PROCEDURE

Based on the metric identification of CMMI model applied GQM approach as mentioned in section 3.2, we define to approve the software project of milk production system. In this system, 3 phases involved to achieve Milk Production Business Goals. At Initial Stage (phase-1), we do analyze Milk Production process flow and linked with functionality operation step by step. In this business operation structure, production units, storage units, own farm milk
collection unit, other contract farmer milk collection unit are linked each other to proceed milk production goal. The process data originates from the milk production diary that was real-time inputted in the goal. The process data originates from the milk unit are linked each other to proceed milk production automatically targets (goals) alignment. All of performance must be showed by senior management with systematic reporting.

At initial stage (phase-1), we considered the previous data of research in company database for milk production system in which includes production units data as shown in Table 1. Table 1 provides the business’ baseline index of correlated metrics data. Because we will need to suggest production future goals for each of existing product items, phase-2 target on each products must be similar packing type in bottles. The formula is as follows:

\[\text{RequiredMilk} = \left(\frac{\text{Package} \times \%\text{RequireMilk}}{100} \right) \times \text{Production} \]

Figure 2 shows the results of required milk liters with the relevant data at phase. This quality of required milk target will support to suggest the goals of the future outcome data.

5. CONCLUSION

In this paper, we presented two approaches to software process improvement: the top down approach using model like CMMI and the metric driven approach we defined Goal Question Metric (GQM) approach which assumes the process change must be driven by the business goals effectively, characteristics and product attributes. We considered business nature and type that will define by collecting previous data resources of performance to analyze the functional measurement data and then business goals must be suggested and aligned with the senior management for future target by systematically. At the
end of year, report will come out by graphs to ensure the specific milestone met.

Therefore, CMMI software process improvement will define to analyze the functional performance and measure the results to modify processes GQM provides plan, estimate, and suggestion to software process improvement for business realistic goals alignment and also monitor and control all of the future resources of performance by a specific metric value identification to achieve all of the related process in business operation. If some product metrics are increasing/decreasing, they evaluated error or warning, senior management will be given approval or realignment for particular product’s item goals. So, the GQM method is greatly helpful for effectively regulating and improving software process metrics, correction of defects and promoting the maturity level of the organization’s capability.

In the future, we plan to extend the GQM method to collect and comparison to analyze more kinds of metrics information such as cohesion and coupling metrics to achieve the continuous process improvement.

REFERENCES

5) Software Engineering Institute (SEI), Capability Maturity Model Integration (CMMI), 2010.
The Experiment of Program for Designing of the Hula Dresses Adding Accessories

Makoto SAKAMOTO, Akane IDO

Abstract

The modern hula ‘auana’ is accompanied by song and Western-influenced musical instruments, and costumes play a role in illustrating the hula instructor’s interpretation of the ‘mele’ (i.e. the chant or song). Moreover, Hawaiian culture and goods spread through Japan today. In particular, we can learn Hula anytime in Japan. On the other hand, designing dresses for the modern hula ‘auana’ is difficult for dancers lacking in knowledge about apparel. In this paper, we study about software for designing hula dresses, and deal with the experimental program for designing the Hawaiian dress material adding Hawaiian accessories. The algorithm is implemented in the Visual Studio Community 2015 and C++ on a personal computer.

Keywords: accessory, ‘auana, C++, design, dress, Hawaii, Hula, kahiko, mele, oli, Visual Studio
用いたデザインパーツに加え、レイなどのアクセサリーを取り入れ、一般ユーザにも容易に使用可能なソフトウェアを目指し、簡易的なフラ生地デザインプログラムを試作した。

2. 中割り法
2.1. プログラムの概要
本プログラムの作成にあたってVisual Studio Community 2015（C++）を使用した。

2.2. 生地デザインの選択
本プログラムでは先行研究と同様に無地とパラカの2種類の生地を用意した。フラ衣装と同じくRadioButtonのチェックを変更することで表示の切り替えができるようになっており、パターン編集時に変更可能である（図8参照）。

2.2.2. 生地デザインの選択
本プログラムでは先行研究と同様に無地とパラカの2種類の生地を用意した。フラ衣装と同じくRadioButtonのチェックを変更することで表示の切り替えができるようになっており、パターン編集時に変更可能である（図8参照）。

2.2.3. フラ衣装の総柄の選択
衣装前面にベースとなる柄を選択でき、選べる柄はあらかじめ数種類用意したものから選ぶことができる（図9、10参照）。

図4. 衣装型の例（ムームー）
図5. 衣装型の例（アロハシャツ）
図6. アクセサリー型の例（ネックレス）
図7. アクセサリー型の例2（ハイビスカス）
図9. 鯉の柄
図10. ハイビスカスの柄
2.2.4 モチーフ単語選択
フラ衣装に使用されるモチーフはあらかじめ用意されている。それぞれのモチーフは関連性のあるグループごとに分かれており、関連性のある単語のRadioButtonを押すと、複数のモチーフがListViewに表示される。その中のダブルクリックで選択すると、DrawImageメソッドにより、初期のフォームのPictureBox上に描画される（図11参照）。

2.2.5 パターンの編集
2.2.5.1 衝突判定
本プログラムでは、マウス操作でモチーフの移動と削除を行う。その際、マウスダウンした位置にモチーフがあるかどうかの判断のために衝突判定を行う。今回も先行研究同様に座標成分を用いた衝突判定を行っている。

画像の左上隅の座標を \((x_0, y_0)\) とし、の幅を足した点を \(X_1, Y_0\)、の高さを足した点を \(X_0, Y_1\) とし、\((x_0, y_0)\)から\((x_1, y_1)\)の範囲内に、マウスダウンで指定された座標があるかどうかで判定を行う方法である。

\(y\)座標は下向きを正とし、\(x\)座標は右向きを正とする。指定された座標を \(O, Y\) すると、衝突する条件は、

\[x_0 \leq X \leq x_1 \quad \text{かつ} \quad y_0 \leq Y \leq y_1 \]

となる。

2.2.5.2 モチーフの配置
PictureBox上のモチーフを移動したいときは、モチーフにカーソルを持っていき、左クリックをしたままドラッグすると移動できます。

マウスダウンした位置にモチーフがあるかどうかの判断と、移動するモチーフの決定は衝突判定によって行う。移動したい位置でボタンを離すことで、マウスダウンした座標からボタンが離された座標までの移動距離を計算し、その移動距離に応じてモチーフの再描画を行う。

2.2.5.3 モチーフの削除
PictureBox上のモチーフの削除はマウスの右クリックを押することで消すことができる。

モチーフの配置と同様、マウスダウンした位置にモチーフがあるかどうかの判断と、削除するモチーフの決定は衝突判定で行う。

2.2.5.4 マウスにより自由描画
ペンボタンを押すことによってモチーフの移動だけでなく自由線を描画できるようになっている。

自由線は先行研究と同様にマウスで指定した場所に細い直線の無数に描画する手法をとっている。

2.2.5.4.1 線の色の変更
ペンボタンを押した後、画面上にある線の色というグループボックス内のRadioButtonのチェックを変更することにより自由線の色を変更できる（図12参照）。

2.2.5.4.2 線の太さの変更
線の色の変更と同様にRadioButtonのチェックを変更して線の太さを変えることができる。最小、普通、最大の３つより太さの選択ができ、初期状態は最小である（図13参照）。

図7 モチーフ選択画面
図8 ペンの色の変更
図9 線の太さの変更
2.2.7.3 線の削除
デザインでペン機能を使用したさいに消したい線を消すことができる。消しゴムと書いてあるボタンを押すと消しゴム機能を使用できる。

3. 実行結果
追加した柄を取り入れた衣装とアクセサリーのデザイン例を以下に示す（図14、15参照）。

4. 考察
本プログラムでは、先行研究2)同様に衣装デザインを行う上での最低限必要であろう機能が存在し、マウスで簡単に操作できるため、パソコンの初心者でも使用できると考えられる。

一方、今回追加することができなかった部分として、作業画面の拡大縮小機能やデザインした衣装型で衣装型紙を作成する機能などがある。

今後もさらに改良を重ね、一般ユーザーにおいて簡単かつ便利に使用でき、自由度も高いプログラムにしていきたい。

5. 結わりに
最近ハワイをモチーフとしたトロピカルな衣装、雑貨、グルメ等が日本において日常的に見られるようになった。これらは、ハワイの神話や自然からデザインされているモチーフが多くあり、フラで使用される歌や詩であるメレを反映しているため、これらに共通する意味がある。また、これらのモチーフは衣装のみならずレイやアクセサリーなどの装身具にも使用されている。これらを個人で制作するにあたってそれに特化したソフトは存在するが、専門的なものが多いため初心者にとって気軽に扱えにくい。

そこで、本研究では初心者でも簡単に扱えることを目標に衣装のみではなく、アクセサリーも取り入れたフラ衣装用デザインソフトの作成を行った。特に、デザインの幅を増やし、保存機能も追加した。JPEG、Bitmap、GIF、PNGのいずれの形式も選択し、保存することも可能とした。

しかし、モチーフについては先行研究2)を取り入れていくつか追加したが、自由度を考えるとまだ物足らない部分があると考えられるので、今後の検討事項とした。

最後に、日頃お世話になっている宮崎市プアマエオレ・メレ・フララボリ펙学術研究部の小武部明昭先生（宮崎市）、ならびにケ・アラ・スターラ・オブ・フララボリ espectroカラー・ケアラヌヘアオブアラニ・マエダ先生（神戸市）に深く感謝の意を表する。さらに、両主宰の家元である著名なロエア（クムフラの師）Kawaiikapuokalani K. Hewett先生（ハワイ州）に敬意を表する。

参考文献
1) 赤坂玲音: “これからはじめる Visual C++2010 for マネージコードC+/CLI”， 秀和システム（2010）.
3) 画像処理ソリューション. [Online]
 http://imagingsolution.blog107.fc2.com/
4) Hale Hawaiian. [Online]
 http://www.halehawaiian.com/shop/
5) ハワイ～フラ. [Online]
 http://www.goohkm.net/16hawai-fura.html
6) Kaiハワイアンファブリック. [Online]
 http://www.e-sundaybeach.com/index.html
7) Laulax. [Online]
8) Msdn. [Online]
 https://msdn.microsoft.com/library
9) TO-HAWAII.com. [Online]
 http://www.to-hawaii.com/jp/hawaiinolei.php
アニメーションの中割りアルゴリズムによるキャラクターの描写

坂本 眞人 a)・石崎 裕一朗 b)・飯干 浩志 c)

Description of the Character by the Inbetweening Algorithm for Animation

Makoto SAKAMOTO, Yuichiro ISHIZAKI, Atsushi IIBOSHI

Abstract

Computer animation is now applied in the scientific research, education, industry, entertainment, and so forth. On the other hand, recently, each local tourist city performs various actions for the restoration of sightseeing spot. Therefore, we would like to cooperate with local tourist city as the sightseeing support by using computer animation. By the way, it is important for animation to think about shape, color, position, structure, quality, and so on. Especially, it is of very importance to outline an object. However, the animator must draw a lot of frames of the object and spend much time and labor, so computerized inbetweening methods for animation have been proposed. Above all, the Miura inbetweening algorithm is very famous, but this algorithm has a problem which appropriate frames are not produced from two keyframes in the case of reducing data. In this paper, we propose a revised algorithm in order to improve such a weak point, and would like to apply computer animation to sightseeing support. The algorithm is implemented in Java on a personal computer.

Keywords: character, computer animation, inbetweening, Java, keyframe, moving point, sightseeing

1. はじめに

国内宿泊旅行者数は、1990年まではゆるやかに増加してきたが、その後現在に至るまで目立った増加は見られない。各地方観光都市は、観光地としての復旧を目指し様々な取り組みを行っている。その一環として、制作過程を簡単にする方法の一つであるコンピュータの中割り法を用いた各観光都市のご当地キャラクターなどのアニメーションの制作を試みることにした。

図1. ちほまろ®
図2. 「ちほまろ」のキャラクター®

本研究では、我々が提案した中間画像を生成する修正版アルゴリズムを用い、キャラクターのアニメーションを作成した。今回は、高千穂のまろうど酒造の「ちほまろ」（図1）という甘酒と乳酸菌を活用した商品のキャラクターを用いる（図2）。

2. 中割り法

1960年頃の初頭から映画やテレビジョンなどに次々とコンピュータアニメーションが用いられるようになった。特に、超LSIの出現や画像情報処理技術のハードウェアとソフトウェアの両面における進歩は、コンピュータアニメーションの制作をさらに活性化させた。しかし、コンピュータアニメーションではまだ多くの問題点をかかえている。その問題点の一つとして制作コストが高価であり、制作に時間がかかるという点が挙げられる。そこで、制作過程を簡単にする方法の一つとして中割り法（in-between）がある。

従来の手書きアニメーションにおける中割り法としては、大量の絵を多数の協同作業者が描く“キーフレーム法”が採用
されてきた。すなわち、アニメーションの流れの中で動作の主要な変化点の絵を1人の“キーアニメータ”が描き、これらの絵を参考にしながら中間の多数の絵を複数の“補助アニメータ”が描いて全体を統合しながら1本のアニメーションを効果的に完成していく。キーアニメータの描く絵を、“キーフレーム (key frame)”と呼ぶ。図3にキーフレームアニメーション制作の概略を示す。

図3. キーフレームアニメーションの概略図

中割り作業は、経験を必要とする作業であり、またアニメータ独特の個性表現や細やかな動きの表現、さらに芸術的な技能まで要求される分野であった。そのため、多大な時間や労力を必要としてきた。しかし、コンピュータアニメーションが登場してからは制作がかなり効率的になってきた。

3. 原理

3.1 Miuraアルゴリズム

コンピュータアニメーションにおける中割アルゴリズムとしてはMiuraアルゴリズムがある。このアルゴリズムでは、データを連続的に入力した場合、つまり2つのキーフレームの関連が強い場合、物体の動きに自然さを与えることができる。

図4において、KF₀とKF₁は入力データ (キーフレーム) であり、画像の端から順に3個のデータごとに区切ったものの1つである。これをパッチとも言う。Miuraアルゴリズムは、以下の式により時間 t における中間画像の座標P(x₀',y₀')を求めるもののである。なお、中間画像の端点P(x₁',y₁')およびP(x₁,y₁)については式 (1) により求める。

\[x^t = (1 - t)x^0 + tx^1 \]
\[y^t = (1 - t)y^0 + ty^1 \] (1)

その他については、次の式 (2) により求める。

\[P(x^t,y^t) = (1 - t)A_0 + tA_1 \] (2)

ただし、

\[A_0 = W^t_0 ((x^1,y^1) - (x^0,y^0)) + (x^1,y^1) \]
\[A_1 = W^t_1 ((x^1,y^1) - (x^1,y^1)) + (x^1,y^1) \]

\[W^t_0 = 1 / |a|^2 \cdot (-a_y, a_x, 0, 0) \]
\[W^t_1 = 1 / |c|^2 \cdot (-c_y, c_x, 0, 0) \]

なお、式 (2) におけるW₀は、bベクトルに対するaベクトルの回転を求め、それを縮小している。W₁は、cベクトルをbベクトルに対し同様に求めている。また、A₀はKF₀上の点を回転し、それに座標(x₁,y₁)を加えることにより移動を計算している。A₁も同様である。そして、最後に時間のパラメータ t を変化させて、中間画像の各点P(x₀',y₀')を求めることができる。

このアルゴリズムは6個の座標データより1個の中間画像の座標を求める手法であり、2つのキーフレームが時間的に接近しているときに、効果的であるが、そうでないときは中間画像に歪を発生させてしまう。

3.2 修正版アルゴリズム

Miuraアルゴリズムではキーフレームの内容によっては対象が異なる場合がある。そこで、以下のような修正版アルゴリズムを提案する。
図5における端点はD, Eは、Miuraアルゴリズムの式（1）により近似を行いその他の点については以下のように計算する。

最初にKF₀基準を考え、AD, ABを二辺とする平行四辺形を考える。これによって得られる第4点をT₀(x₀, y₀)とする。また、CB, CEを二辺とし同様にB₀(x₀₀, y₀₀)を求める。この2点を用いて次式よりM₀(x₀₀₀₀, y₀₀₀₀)を求める。

\[
\begin{align*}
 x₀₀₀₀ &= (1 - K₀)x₀₀ + K₀x₀₀₀₀ \\
 y₀₀₀₀ &= (1 - K₀)y₀₀ + K₀y₀₀₀₀
\end{align*}
\]

ただし、

\[
K₀ = \frac{(x₀₀₀₀ - x₀₀)^2 + (y₀₀₀₀ - y₀₀)^2}{(x₀₀₀₀ - x₀₀)^2 + (y₀₀₀₀ - y₀₀)^2}
\]

次にKF₁基準とし、同様にDF, FGよりT₁(x₁₀₀₀₀, y₁₀₀₀₀)を、GH, IEよりB₁(x₁₀₀₀₀, y₁₀₀₀₀)を求める。式（4）より、M₁(x₁₀₀₀₀, y₁₀₀₀₀)を求める。

\[
\begin{align*}
 x₁₀₀₀₀ &= (1 - K₁)x₁₀₀₀₀ + K₁x₁₀₀₀₀ \\
 y₁₀₀₀₀ &= (1 - K₁)y₁₀₀₀₀ + K₁y₁₀₀₀₀
\end{align*}
\]

ただし、

\[
K₁ = \frac{(x₁₀₀₀₀ - x₁₀₀₀₀)^2 + (y₁₀₀₀₀ - y₁₀₀₀₀)^2}{(x₁₀₀₀₀ - x₁₀₀₀₀)^2 + (y₁₀₀₀₀ - y₁₀₀₀₀)^2}
\]

式（3）、（4）より求めたM₀, M₁より中間画像の座標M(x₀₀₀₀₀₀, y₀₀₀₀₀₀)を式（5）より求める。

\[
\begin{align*}
 x₀₀₀₀₀₀ &= (1 - L)x₀₀₀₀₀ + Lx₀₀₀₀₀₀ \\
 y₀₀₀₀₀₀ &= (1 - L)y₀₀₀₀₀₀ + Ly₀₀₀₀₀₀
\end{align*}
\]

ただし、

\[
L = \frac{(x₀₀₀₀₀₀ - x₀₀₀₀₀)^2 + (y₀₀₀₀₀₀ - y₀₀₀₀₀)^2}{(x₀₀₀₀₀₀ - x₀₀₀₀₀)^2 + (y₀₀₀₀₀₀ - y₀₀₀₀₀)^2}
\]

式（5）を用いて、時間パラメータ tを一定にしたときの座標Mを直線で接続することにより、時間tにおける中間画像が得られる。ここで、実際のLの値は、tの値と等しくなる。ところが、KF₀とKF₁において極端に関連がない場合、中間画像が歪む。そこで、KF₀自身に位置パラメータと回転パラメータを入力することにより並進及び回転を施し、最後の画像KF₁に幅を持たす工夫をした。

4. シミュレーション

前章の修正版アルゴリズムを用い、まろうど酒造「ちほまろ」のシミュレーションを行った。また、観光キャラクターの試作を行うにあたり、基本的な人がの動き（腕、足の動き）についてもシミュレーションを行った。以下、Java (Windows版)を用いて、コンピュータ (Dell Computer) 上で実行した結果の例を図5-図7に示す。
5. 考察
データに関して、今回方眼用紙で座標を確認しながら作成する原始的な方法を採用したため、画像データ作成に時間を要してしまった。一般的に、アニメーション作業においてキーフレーム作成は経験を必要とし、一番時間がかかるものであるが、ディジタイザーなどの画像入力装置を利用する方が効率的であると考えられる。また、キャラクターの試作には、人の基本的な動きを考える必要があるので、こちらについても画像データを作成した。

また、Miura アルゴリズムは処理時間が速いが、入力データが不連続な場合には画像に歪みを発生させ、画質を低下させる。それに対して、修正版アルゴリズムでは、比較的な連続的な画像を生成できたと考えられる。Miura アルゴリズムでは、6 個の位置座標から中間画像の 1 個の座標を求め、連続性の高いキーフレームの影響を直接受けるという欠点があるのに対し、修正版アルゴリズムではその影響を回避できるように工夫している。

さらに、アニメーションが画像データに依存するか否かを調べてみた。例えば、腕のアニメーションでは筋点数が 27 個に対し、足のアニメーションは 101 個である。筋点数が多いほうが中間画像のつながるかぎりあることが確認できた。また、画像データの幾何学的性質をいろいろ変えてみた。その結果アニメーションの様々な幾何学的変化に対応して自然な中間画像を生成できもあることも確認できた。

キャラクターの「ちほまろ」についても、動きに変化のない部分が中間画像に変化をもたらすことができなかった。入力データが直線近似でなくなりような場合や、2 個のキーフレームが極端に関連性の薄い場合には、新しいアルゴリズムでもうまく生成できなかった。そのため、たくさんの人々で異質な画像データを入力して、詳細な分析を必要とするであろう。また、表情の変化などにおいても今回作成できなかったので、そこについても今後の課題としていきたい。

6. おわりに
本研究では、コンビュータアニメーションにおける観光キャラクターの中間画像および、基本的な動きの中間画像を作成した。その結果、なるほど自然の中間画像を作成することことができたが、入力データが直線近似でなくならない場合はや、2 個のキーフレームが極端に関連性の薄い場合には、修正版アルゴリズムでもうまく生成できなかった。そのため、たくさんの人々で異質な画像データを入力して、詳細な分析を必要とするであろう。また、表情の変化などにおいても今回作成できなかったので今後の課題とし、さらに 3 次元コンビュータグラフィックスやバーチャル技術を念頭に置いて 3 次元キャラクターの中間アルゴリズムの応用も検討していきたい。

参考文献
4) JATA 日本観光協会国内旅行の現状と課題 [Online] https://www.jata-net.or.jp/membership/info-japan/research/03_1st.html
Three-step Recognition Method for Handwritten Digits Using SVM and Neural Network

Kunihito YAMAMORI, Seiya INO, Masaru AIKAWA

Abstract

Handwritten mathematical expression recognition is one of the research fields of handwritten character recognition. Recognition of handwritten mathematical expressions also attracts attention from the viewpoint of education, and applications that help students whose weak subject are mathematics have also been developed in recent years. In this paper, we focus on handwritten digits recognition. We propose three-step recognition method that consists of support vector machine, artificial neural network and the reevaluation of those results. Experimental results showed that our method achieved 93.4% accuracy for handwritten digit images.

Keywords: Support vector machine, Neural network, Image recognition, Handwritten digits

1. はじめに

手書き文字認識の研究分野の一つに手書き数字認識がある。手書き数式認識とは、紙やタブレット端末上に書かれた手書き数式に対して、数式中の文字や記号を、数式の意味も含めて認識を行う技術のことである。手書き数式認識は教育の観点からも注目を浴びており、数学の苦手な学生を手助けするアプリケーションも近年開発されている。

手書き文字認識を行う手法としてテンプレートマッッチングや最近傍法がある。テンプレートマッッチングは、ある文字を代表するテンプレート画像と入力画像の類似度によって認識を行うため、書き手によって形が変わってしまう手書き文字認識では膨大な数のテンプレートを準備する必要がある。最近傍法は、あらかじめクラス分類されているすべての参照データと入力画像とのユークリッド距離を算出し、ユークリッド距離が最も小さい参照データに示す。提案手法では、提案手法では、モリの研究分野の一つに手書き数字認識を示す。

2. はじめに

手書き文字認識を行う手法としてテンプレートマッッチングや最近傍法がある。テンプレートマッッチングは、ある文字を代表するテンプレート画像と入力画像の類似度によって認識を行うため、書き手によって形が変わってしまう手書き文字認識では膨大な数のテンプレートを準備する必要がある。最近傍法は、あらかじめクラス分類されているすべての参照データと入力画像とのユークリッド距離を算出し、ユークリッド距離が最も小さい参照データに示す。提案手法では、提案手法では、モリの研究分野の一つに手書き数字認識を示す。

2.1. 線形クラス分類

SVM は 2 クラスのパターン識別器を構成する手法で、各クラスの学習データから識別面を構築し、未知のデータが識別面のどちら側にあるかでクラス分類を行う。識別面は学習データから識別面までの距離を最大化するようにする。学習データから識別面までの距離をモーションと呼ぶ。モーションを最大化することにより、未知のデータに対しても高い精度を得ることができる。

式(1)中の重み \(w \) としきい値 \(\theta \) はともにパラメータである。
る。また、符号関数\(\text{sign}(u)\)を式(2)に示す。

\[
\text{sign}(u) = \begin{cases}
1 & (u > 0), \\
-1 & (u \leq 0).
\end{cases}
\tag{2}
\]

式(2)は、入力\(x\)と重み\(w\)の内積がしきい値\(\theta\)より大きいとき1を出力し、しきい値\(\theta\)以下のとき-1を出力する。

2.2. Multi-class SVM

SVMを多クラスの分類が可能のように拡張したものである多クラスSVM（Multi-class SVM）という。

SVMを多クラス分類可能な方法の一つに1対1分類（one-versus-one）がある。1対1分類法は、全\(n\)クラスの中から2クラスずつのペアを順に選び、SVMを構築する。\(\binom{n}{2}\)通りのペアで構築されたSVMを組み合わせることにより、すべてのクラス分類が可能になる。

3. ニューラルネットワーク

3.1. 階層型ニューラルネットワーク

階層型ニューラルネットワークとは、ニューロンと呼ばれるユニットを複数の層を構成するように並べたニューラルネットワークである。階層型ニューラルネットワークの例を図1に示す。

中間層と出力層の各ユニットは、入力の出力への影響の大きさを表すパラメータである重み\(w\)とバイアス\(b\)を持つ。入力\(x\)と重み\(w\)の内積を求め、バイアス\(b\)を減じた値に活性化関数を作用させた値をユニットの出力\(y\)とする。ユニットの出力\(y\)は式(3)で導出できる。

\[
y = f(x \cdot w - b).
\tag{3}
\]

ここで、式(3)の\(f(u)\)は活性化関数と呼ばれ、よく用いられる活性化関数の例としてシグモイド関数を式(4)に示す。

\[
f(u) = \frac{1}{1 + e^{-u}}.
\tag{4}
\]

3.2. 誤差逆伝播法

誤差逆伝播法（Backpropagation）は、ニューラルネットワークを学習させる際に用いられるアルゴリズムであり、出力層から入力層に向かって重みとバイアスを更新する。更新前のバイアスを\(b_{\text{old}}\)、更新後のバイアスを\(b_{\text{new}}\)、更新前の重みを\(w_{\text{old}}\)、更新後の重みを\(w_{\text{new}}\)としたときのバイアスと重みの更新式を式(5)に示す。

\[
\begin{align*}
b_{\text{new}} &= b_{\text{old}} + \eta \frac{\partial E}{\partial b_{\text{old}}}, \\
w_{\text{new}} &= w_{\text{old}} + \eta \frac{\partial E}{\partial w_{\text{old}}}.
\end{align*}
\tag{5}
\]

式(5)の\(\eta\)は学習率と呼ばれ、学習速度の調整を行うパラメータであり、\(E\)はニューラルネットワークの出力と教師信号との誤差を表す。

4. 提案手法

提案手法での処理の流れを図2に示し、SVMによる大分類とニューラルネットワークによる詳細認識での処理を図3に示す。図2に示した通り、入力画像に前処理として平滑化、二値化、細線化を行う。次に、各数字に対して間違われやすい数字の上位2種を、SVMを用いてあらかじめ決定しておく。以降、間違われやすい数字を候補文字、本来の数字を代表文字と呼ぶ。図3のブロックでは、「0」が代表文字、「2, 3」が候補文字であることを表す。さらに、代表文字と候補文字からなる手書き数字画像を学習させたニューラルネットワークで詳細認識を行う。SVMの分類結果と、ニューラルネットワークの認識結果を再評価することで、入力画像の文字を最終的に決定する。

4.1. Multi-class SVMを用いた大分類

前処理を加えた文字画像を入力とし、Multi-class SVMで候補文字を決定する。候補文字の決定法を以下に示す。

(1) 各数字に対して、代表文字とは異なる数字として分類された数（誤分類数）を調べる。
バイアスと重みの更新式を式り、出力層から入力層に向かって重みとバイアスを更新トワークを学習させる際に用いられるアルゴリズムである。ユニットの出力値に活性化関数を作用させた値をユニットの出力の大きさであるハミルトンネットワークである。階層型ニューラルネットワークばれるユニットを複数の層を構成するように並べたニューラルネットワークの例を図示するのである。

3.1.

3.2.

誤差逆伝播法は、ニューラルネットワークの出力層の各ユニットの中間層と出力層の各ユニットは、入力層の出力への影響を多クラス分類とニューラルネットワークの学習データを多クラスの分類が可能なように拡張したものである。誤差逆伝播法は、入力データのペアで構築された多クラスの分類法(DSVM)がある。また、符号関数と重みの内積を求め、バイアスの内積がしきい値を0時に示す。

(1) 大分類における代表文字候補と第1出力が一致した場合
両者の一致した認識結果を最終的な認識結果とする。

(2) 大分類における代表文字候補と第1出力が異なる場合
以下の2パターンに従い、最終的な認識結果を決定する。
1) 大分類における代表文字候補と第2出力が一致した場合
出力差がしきい値より大きければ第1出力を最終的な認識結果とし、小さければ第2出力を最終的な認識結果とする。
2) 大分類における代表文字候補と第2出力が異なる場合
第1出力を最終的な認識結果とする。

5. 実験と考察

5.1. 実験環境

本研究で用いた手書き数字データは、NIST (アメリカ国立標準技術研究所) の「Special Database 19 2nd Edition」を用いる。SVMとニューラルネットワークの学習データに60,000枚を使用する。テストデータには、学習データに使用されていない10,000枚を使用する。実験結果は7分割交差検証により評価する。

SVM は、7つのデータセットを用いた「0〜9」の10クラスでモデルを構築する。詳細認知で使用するニューラルネットワークのユニット数は、入力層を画像サイズの784、中間層を予備実験により50、出力層を代表文字と候補文字を2種による3に設定する。また、再評価におけるしきい値は予備実験の結果から0.1に設定する。

5.2. 実験結果

数字の認識精度は、式(6)に示す認識率で評価する。

\[
\text{認識率} \times 100. (6)
\]

正答数のテストデータ総数

各データセットのテストデータに対して、SVMのみ、ニューラルネットワークのみを用いた認識率と、提案手法を用いたときの認識率を図4に示す。図4より、提案手法の認識率はSVMのみの認識率より約1%、ニューラルネットワークのみの認識率より約2%向上したことが
5.3. 考察

図5の詳細認識の正答数は、再評価結果に関わらず第1出力で最終的な認識結果としたときの正答数を示している。図5より、再評価を行うことで正答数は、SVMのみ、ニューラルネットワークのみの場合の約1.8倍に増加していることが分かる。このことから、大分類における代表文字候補と第2出力が一致し、かつ第1、第2出力の差が小さい場合に、第2出力を最終的な認識結果とすることで、第1出力で最終的な認識結果とするより正答数が増加したということができえる。

6. おわりに

本研究では、パターン認識の手段として一般的なSVMとニューラルネットワークより認識率が高い手法の開発を目的とした。そのため、SVMを用いて候補文字を決定する大分類と、代表文字と候補文字のみを学習させたニューラルネットワークによる詳細認識、大分類と詳細認識の認識結果の再評価という3段階による手法を提案した。

提案手法について、SVMのみとニューラルネットワークのみを用いたときの手書き数字認識での認識率の比較を行った。実験結果から、提案手法はSVMやニューラルネットワークのみを用いた場合より約1%高い結果を得ることができた。また、提案手法において大分類、詳細認識、再評価の各段階における正答数の比較を行った。実験結果から、大分類と詳細認識において異なる認識結果となった場合の正答数を、再評価を行うことで増加させることができた。

今後の課題としては、候補文字に選択する数字を増やし、候補文字が多い場合には複数のニューラルネットワークに学習させ、各ニューラルネットワーク間での認識結果の統合を行うことが挙げられる。

参考文献

犠打と犠飛を考慮した OERA 改良モデルによる
日本プロ野球打者の評価

山森 一人 a)・大塚 蒼 b)・相川 勝 c)

Evaluation of Japanese Professional Baseball Hitter
by Improved OERA Model Considering with Sacrifice Hit and Fly

Kunihiyo YAMAMORI, Sou OTSUKA, Masaru AIKAWA

Abstract

There are some Hitters' evaluation indexes as batting average, number of homeruns, hit points, and so on. However, the hit rate, the number of homeruns, etc. are only an aspect of batters and it is difficult to objectively evaluate focusing on multiple evaluation indexes. The OERA model was proposed to evaluate batters fairly and accurately. However, OERA model does not include sacrifice hits and flies. It may not be suitable for Japan's small baseball. In this paper, we propose an improved OERA model incorporating with sacrifice hit and flies which are not adopted in the original OERA model. Experimental results showed that the improved OERA model can be a model that consider both the batting average rate and hit points.

Keywords: OERA model, Sacrifice hit, Sacrifice fly, Absorbing markov chain

1. はじめに

現代では、「スポーツ」に費やす時間が増加している。NHK放送文化研究所3)の“2015 年国民生活時間調査報告書”によると、1995年以降、国民全体のスポーツをする時間は増加傾向にある。数あるスポーツの中で、「野球」は人気の中心である。中央調査局4)の調査によると、全国の成人男女1,201人に、好きなプロスポーツは何かという質問をしたところ、1996年から現在までプロ野球が変わっても 1 位である。人気の野球だからこそ、どの打者がより優れているかという議論がよく起こる。どの打者が優れているかという議論の中で使われる指標に、打率、本塁打数などは打者の一側面に過ぎず、打数といった毎年表彰の対象となる指標がある。しかしながら、打率、本塁打数などは打者の一側面に過ぎず、複数の項目に着目した客観的な評価を行うことは困難である。

公平、かつ正確に打者の評価を行うために、OERA（Offensive Earned-Run Average）モデル 1)がCoverらによって提案され、メジャーリーガーを対象に打者の評価が行われている。メジャーリーガーの特徴に、強打者が多く、犠打、犠飛をほとんど打たない点が挙げられる。つまり、犠打、犠飛をゲーム戦略上多用する日本のスモールベースボールには、OERAモデルは適していない可能性がある。

本研究では、OERAモデルには取り入れられていない犠打、犠飛を組み込んだOERA改良モデルを提案する。本研究の目的は、OERAモデルに犠打、犠飛を取り入れた場合、OERAランキングとOERA改良ランキングではどのような違いが生じるかを調査する事である。また、Coverらや木下6)が比較対象とした打率ランキングだけではなく、打点ランキングとも比較し、OERAモデルによる順位とOERA改良モデルによる順位は、打率順位と打点順位のどちらに近いのかを調査する。

2. OERA 改良モデル

OERA 改良モデルとは、マルコフ連鎖を基にして打者の評価の貢献度を数値化するOERAモデルに、犠打、犠飛を取り入れたモデルである。ここでは、OERA改良モデルの定義と慣例、アウトカウントとランナーの状態、打撃を説明する。

定義

特定の打者が常に打席に立ち、27アウトになるまで攻撃したと想定すると何点得点するかを求めるモデルである。

慣例
表1: ランナーなしそらランナー三塁までの状態

<table>
<thead>
<tr>
<th>ランナー</th>
<th>なし</th>
<th>一塁</th>
<th>二塁</th>
<th>三塁</th>
</tr>
</thead>
<tbody>
<tr>
<td>ノーアウト</td>
<td>S₁</td>
<td>S₂</td>
<td>S₃</td>
<td>S₄</td>
</tr>
<tr>
<td>ウンアウト</td>
<td>S₅</td>
<td>S₁₀</td>
<td>S₁₁</td>
<td>S₁₂</td>
</tr>
<tr>
<td>ツーアウト</td>
<td>S₁₇</td>
<td>S₁₈</td>
<td>S₁₉</td>
<td>S₂₀</td>
</tr>
<tr>
<td>スリーアウト</td>
<td>S₀</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ノーアウトとランナーがどのように進塁するかの規則であり、以下の5つとする。
- 犠飛、犠飛によってランナーは一塁進む。
- エラーはアウトとしてカウントされる。
- 犠飛、犠飛以外のアウトによってランナーは進塁しない。
- 全ての単打と二塁打は長打であるとする。
- すなわち、単打はベースランナーを二塁進塁させる。二塁打は一塁からランナーを生還させる。
- ダブルプレーはしない。

状態
野球において起こり得る状態を指しノーアウトランナーなからツーアウト満塁、スリーアウトまで、表1、表2に示した25の状態がある。

打撃
打撃は凡打又は三振のH₀、四死球のH₈、単打のH₁、二塁打のH₂、三塁打のH₃、本塁打のH₄、犠飛のH₅、犠飛のH₆で構成される。OERA改良値は、凡打又は三振の確率P₀、四死球の確率P₈、単打の確率P₁、二塁打の確率P₂、三塁打の確率P₃、本塁打の確率P₄、犠飛の確率P₅、犠飛の確率P₆の値により計算される。例えば、P₀、P₈は式(1)、式(2)で求められる。

\[P₀ = \frac{凡打数 + 三振数}{打数 + 四死球数} \] \((1) \)

\[P₈ = \frac{四死球数}{打数 + 四死球数} \] \((2) \)

P₁, P₂, P₃, P₄, P₅, P₆も式(1), 式(2)と同様に求められる。

3. OERA改良モデルの計算方法
マルコフ連鎖が1つ以上の吸収状態を持ち、任意の状態からある吸収状態に達し得るとき吸収マルコフ連鎖 5）という。野球の場合はスリーアウトが吸収状態となり、この状態はS₀の1つしかない。また、スリーアウト以外の状態が非吸収状態であり、S₁からS₂₄までの24状態が存在する。したがって、吸収マルコフ連鎖の推移確率行列Pは式(3)となる。

\[P = \begin{pmatrix} I & 0 \\ T & Q \end{pmatrix} \] \((3) \)

ここで、吸収状態に相当する行列Iは1×1、非吸収状態に相当するQは24×24である。さらに、OERA改良モデルの慣例に従えば、TとQは式(4)と式(5)のように示すことができる。

\[T = \begin{pmatrix} T₁ \\ T₂ \\ T₃ \end{pmatrix} \] \((4) \)

\[Q = \begin{pmatrix} Q₁₁ & Q₁₂ & Q₁₃ \\ Q₂₁ & Q₂₂ & Q₂₃ \\ Q₃₁ & Q₃₂ & Q₃₃ \end{pmatrix} \] \((5) \)

式(4)のT₁, T₂, T₃と式(5)のQ₁₁～Q₃₃は式(6)、式(7)、式(8)、式(9)、式(10)でそれぞれ定義される。

\[T₁ = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = T₂ \] \((6) \)

\[T₃ = \begin{pmatrix} P₀ \\ P₀ \\ P₀ \end{pmatrix} \] \((7) \)

\[Q₁₁ = \begin{pmatrix} P₀ & P₀ + P₈ & P₈ & P₈ & P₈ & 0 & 0 & 0 & 0 \\ P₀ & 0 & P₂ & P₃ & P₅ & P₈ & 0 & 0 & 0 \\ P₀ & P₁ & P₂ & P₃ & P₅ & P₇ & 0 & 0 & 0 \\ P₀ & P₅ & P₁ & P₂ & P₃ & P₇ & 0 & 0 & 0 \\ P₀ & P₁ & P₂ & P₃ & 0 & P₅ & 0 & P₈ & 0 \\ P₀ & 0 & P₂ & P₃ & 0 & P₁ & 0 & P₈ & 0 \\ P₀ & 0 & P₂ & P₃ & 0 & 0 & 0 & P₈ & 0 \\ P₀ & 0 & 0 & P₂ & P₃ & 0 & 0 & P₅ & P₆ \end{pmatrix} \] \((8) \)

\[Q₁₂ = Q₂₂ = Q₃₃ \]

\[Q₁₃ = Q₂₁ = Q₂₃ = Q₃₁ = Q₃₂ = 0. \] \((9) \)

\[\begin{pmatrix} P₀ & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & P₀ & P₅ & 0 & 0 & 0 & 0 \\ 0 & 0 & P₀ & P₅ & 0 & 0 & 0 \\ P₅ + P₆ & 0 & 0 & P₆ & 0 & 0 & 0 \\ 0 & 0 & 0 & P₅ + P₆ & 0 & P₇ & P₈ \\ 0 & 0 & 0 & P₅ + P₆ & 0 & 0 & P₇ \\ 0 & 0 & 0 & 0 & P₅ + P₆ & 0 & P₇ + P₈ \end{pmatrix} \] \((9) \)
式(11)の\((I - Q)^{-1}\)を吸収マルコフ連鎖の基本行列と呼ぶ。この基本行列の\(L_j\)要素は、状態を出発し、\(j\)状態を通過する回数の期待値を表している。

野球はノーアウトラナーなしの\(S_0\)から始まる。したがって、\(S_0\)から始まり、各状態を通過する回数の期待値がわかられば1イニングの期待得点値があるので、ここで、式(5)から\((I - Q)^{-1}\)を求め、その第1行に注目する。すなわち、この基本行列の第1行は、\(S_0\)から始まったイニングにおいて、\(S_0\)を通過する回数の期待値を表している。基本行列の第1行と\(S_0\)における期待得点値\(R\)がわれば1イニングの期待得点値が分まる。\(S_0\)における期待得点値\(R\)はOERA改良モデルの慣例に従えば、式(12)のように示すことができる。

\[
R = \begin{pmatrix}
R_1 \\
R_2 \\
R_3
\end{pmatrix}
\] (12)

式(12)の\(R_1\)、\(R_2\)、\(R_3\)は式(13)、式(14)の通りである。

\[
R_1 = \begin{pmatrix}
P_3 \\
2P_6 + P_3 + P_2 \\
2P_8 + P_3 + P_2 + P_1 + P_0 + P_6 \\
3P_4 + 2P_2 + 2P_1 + P_0 + P_6 \\
3P_4 + 2P_2 + 2P_1 + P_0 + P_6 \\
4P_3 + 3P_2 + 2P_1 + P_0 + P_6
\end{pmatrix}
\] (13)

\[
R_3 = \begin{pmatrix}
P_3 \\
2P_6 + P_3 + P_2 \\
2P_8 + P_3 + P_2 + P_1 + P_0 + P_6 \\
3P_4 + 2P_2 + 2P_1 + P_0 + P_6 \\
3P_4 + 2P_2 + 2P_1 + P_0 + P_6 \\
4P_3 + 3P_2 + 2P_1 + P_0 + P_6
\end{pmatrix}
\] (14)

あるイニングにおける状態\(S_n\)からの得点期待値\(E(S_n)\)を式(15)に示す。

\[
E(S_n) = (I - Q)^{-1}R.
\] (15)

ノーアウトラナーなしの\(S_0\)から始まる1イニングの期待得点値は\(E\)の最初の要素\(E(1)\)となるので、ある打者の1試合当たりの期待得点値であるOERA改良値は式(16)のようになる。

\[
OERA改良値 = 9E(1).
\] (16)

4. 評価

日本プロ野球機構（NPB）が発表したセ・リーグとパ・リーグの年度別成績の個人打撃成績TOP10を2006年から2016年まで集計した、延べ220人でOERA改良モデルを評価する。セ・リーグとパ・リーグの打率、打点、OERA値、OERA改良値を表3、表4にそれぞれ示す。表3、表4は打者を打率の高い順に上から並べており、220人の中から打率ランキングTOP5と、OERA値OERA改良値との差が大きい打者をピックアップしたものである。

表3：セ・リーグで打率、打点、OERA値、OERA改良値の比較

<table>
<thead>
<tr>
<th>打者</th>
<th>打率 (順位)</th>
<th>打点 (順位)</th>
<th>OERA 値 (順位)</th>
<th>OERA改良値 (順位)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 内川聖一</td>
<td>0.378(1)</td>
<td>67(55)</td>
<td>9.276(16)</td>
<td>9.505(15)</td>
</tr>
<tr>
<td>10 青木宣親</td>
<td>0.358(2)</td>
<td>63(66)</td>
<td>9.667(13)</td>
<td>9.708(13)</td>
</tr>
<tr>
<td>06 福留勇介</td>
<td>0.351(3)</td>
<td>104(11)</td>
<td>11.391(2)</td>
<td>11.426(2)</td>
</tr>
<tr>
<td>10 平野信一</td>
<td>0.350(4)</td>
<td>24(108)</td>
<td>6.851(53)</td>
<td>8.761(20)</td>
</tr>
<tr>
<td>10 マーティン</td>
<td>0.349(5)</td>
<td>91(24)</td>
<td>7.859(31)</td>
<td>7.914(33)</td>
</tr>
<tr>
<td>14 菊池信介</td>
<td>0.325(20)</td>
<td>58(78)</td>
<td>6.036(77)</td>
<td>6.891(57)</td>
</tr>
<tr>
<td>16 菊池信介</td>
<td>0.315(39)</td>
<td>56(82)</td>
<td>5.756(82)</td>
<td>6.229(76)</td>
</tr>
<tr>
<td>10 鈴木心</td>
<td>0.360(63)</td>
<td>56(82)</td>
<td>6.330(67)</td>
<td>7.078(48)</td>
</tr>
<tr>
<td>07 相川英二</td>
<td>0.320(76)</td>
<td>33(99)</td>
<td>5.058(95)</td>
<td>5.548(88)</td>
</tr>
<tr>
<td>07 赤星憲広</td>
<td>0.300(78)</td>
<td>19(109)</td>
<td>4.827(99)</td>
<td>5.705(87)</td>
</tr>
<tr>
<td>11 平野信一</td>
<td>0.295(87)</td>
<td>29(104)</td>
<td>4.110(108)</td>
<td>4.754(103)</td>
</tr>
<tr>
<td>15 ロッソ</td>
<td>0.291(95)</td>
<td>73(47)</td>
<td>6.337(66)</td>
<td>6.357(73)</td>
</tr>
<tr>
<td>12 和田一浩</td>
<td>0.285(98)</td>
<td>63(66)</td>
<td>6.060(76)</td>
<td>6.115(80)</td>
</tr>
<tr>
<td>15 平野良介</td>
<td>0.283(100)</td>
<td>53(85)</td>
<td>6.108(74)</td>
<td>6.128(79)</td>
</tr>
<tr>
<td>11 ブラズル</td>
<td>0.282(101)</td>
<td>69(51)</td>
<td>5.235(89)</td>
<td>5.281(93)</td>
</tr>
<tr>
<td>11 ルミレス</td>
<td>0.279(106)</td>
<td>73(47)</td>
<td>5.205(90)</td>
<td>5.243(94)</td>
</tr>
</tbody>
</table>

表4：パ・リーグ、打率、OERA値、OERA改良値の比較

<table>
<thead>
<tr>
<th>打者</th>
<th>打率 (順位)</th>
<th>打点 (順位)</th>
<th>OERA 値 (順位)</th>
<th>OERA改良値 (順位)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 柳田悠次</td>
<td>0.363(1)</td>
<td>99(8)</td>
<td>12.678(1)</td>
<td>12.695(11)</td>
</tr>
<tr>
<td>15 秋山翔吾</td>
<td>0.359(2)</td>
<td>55(69)</td>
<td>8.925(7)</td>
<td>9.143(7)</td>
</tr>
<tr>
<td>10 西岡剛</td>
<td>0.346(3)</td>
<td>59(67)</td>
<td>8.644(12)</td>
<td>8.935(9)</td>
</tr>
<tr>
<td>13 長谷川勇也</td>
<td>0.341(4)</td>
<td>83(21)</td>
<td>7.821(19)</td>
<td>7.878(19)</td>
</tr>
<tr>
<td>16 角中勝也</td>
<td>0.339(5)</td>
<td>69(48)</td>
<td>8.233(13)</td>
<td>8.382(14)</td>
</tr>
<tr>
<td>13 銀次</td>
<td>0.317(26)</td>
<td>54(75)</td>
<td>5.680(78)</td>
<td>5.752(86)</td>
</tr>
<tr>
<td>08 岡山巧</td>
<td>0.317(27)</td>
<td>72(43)</td>
<td>6.705(49)</td>
<td>7.299(36)</td>
</tr>
<tr>
<td>06 リック</td>
<td>0.314(38)</td>
<td>34(101)</td>
<td>5.618(81)</td>
<td>5.682(88)</td>
</tr>
<tr>
<td>16 西川直輝</td>
<td>0.314(38)</td>
<td>43(94)</td>
<td>6.799(44)</td>
<td>7.461(32)</td>
</tr>
<tr>
<td>06 川崎宗則</td>
<td>0.312(47)</td>
<td>27(110)</td>
<td>5.579(85)</td>
<td>6.272(70)</td>
</tr>
<tr>
<td>08 今江敏晃</td>
<td>0.309(50)</td>
<td>55(69)</td>
<td>6.493(57)</td>
<td>6.873(49)</td>
</tr>
<tr>
<td>09 佐井信男</td>
<td>0.306(60)</td>
<td>58(68)</td>
<td>6.664(50)</td>
<td>7.166(38)</td>
</tr>
<tr>
<td>11 木多雄一</td>
<td>0.305(63)</td>
<td>43(94)</td>
<td>5.202(93)</td>
<td>6.469(63)</td>
</tr>
<tr>
<td>12 佐井信男</td>
<td>0.304(66)</td>
<td>48(88)</td>
<td>6.943(38)</td>
<td>6.956(45)</td>
</tr>
<tr>
<td>16 伊川聖一</td>
<td>0.304(66)</td>
<td>106(3)</td>
<td>5.586(83)</td>
<td>5.664(90)</td>
</tr>
<tr>
<td>12 森山恵</td>
<td>0.289(99)</td>
<td>33(104)</td>
<td>5.494(89)</td>
<td>5.888(81)</td>
</tr>
</tbody>
</table>
表 5: 打点ランキングと OERA モデル、OERA 改良モデルの差

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>OERA モデル</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>OERA 改良モデル</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

表 6: 打点ランキングと OERA モデル、OERA 改良モデルの差

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>OERA モデル</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>OERA 改良モデル</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

表 7: 打率ランキングと OERA モデル、OERA 改良モデルの差

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>OERA モデル</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>OERA 改良モデル</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

表 8: 打率ランキングと OERA モデル、OERA 改良モデルの差

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>OERA モデル</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OERA 改良モデル</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

録を示している。打率の列の 0.3780(1) は 08 内川聖一の打率が 3 割 7 分 8 呎である。打率ランキング順位も上がっているので OERA 改良値が高い値を示し、OERA 改良順位も上がっている。

2. セ・リーグの 10 平野惠一やパ・リーグの本多雄一などの打者は、犠打、犠飛を多く打っているので OERA 改良値が高い値を示し、OERA 改良順位も上がっている。

3. パ・リーグの 16 内川聖一は犠飛数が 9 本と他 の打者より多いが、打数に比べれば少ないため OERA 値と OERA 改良値がほとんど変わらない。

打率、打点ランキングの順位と OERA、OERA 改良モデルの順位の差が 0~10 の打者がそれぞれ何人いるかをまとめた結果を表 5、表 6、表 7、表 8 にそれぞれ示す。「0」の列は打率、打点の順位と OERA、OERA 改良モデルの順位が同じ打者の人数を示しており、「計」の列は差が 0~10 の打者の合計の人数を示している。両リーグから 110 人ずつを抽出しているので、ランキング差が 0~10 以内の選手が多いほど、そのランキングに類似しているといえる。

表 5、表 6 より、実際の打点ランキングとの差が 0~10 の打者の合計はセ・リーグ、パ・リーグの両方とも OERA モデルの方が多い。このことから、OERA モデルによるランキングは実際の打点ランキングに近いことが分かる。

表 6、表 7 より、実際の打率ランキングとの差が 0~10 の打者の合計はセ・リーグ、パ・リーグの両方とも OERA 改良モデルの方が多い。このことから、OERA 改良モデルによるランキングは実際の打率ランキングに近いことが分かる。また、打点ランキングと OERA 改良モデルによるランキングの差は、セ・リーグ、パ・リーグ共それほど大きくない事も分かった。

5. おわりに

本研究では、犠打、犠飛を含めた OERA 改良モデルを提案し、2006 年から 2016 年までの個人打撃成績 TOP10 の打者 220 人の OERA 値と OERA 改良値を求め、実際の打点ランキング、打率ランキングと比較した。

実験の結果、犠打、犠飛を多く打つと OERA 改良値が高い値を示した。また、犠打が少なく、犠飛だけを多く打つ打者の OERA 値と OERA 改良値はほとんど変わらなかった。これは、犠飛となる条件を満たす場合が少ないため、犠飛を打っても OERA 値と OERA 改良値にほとんど差がでなかったためと考えられる。打率、打点ランキングとの比較では、打点ランキングでは OERA モデルの方が实际のランキングに近いものの OERA 改良モデルとの差は小さく、打率ランキングでは OERA 改良モデルの方が実際のランキングに近いという結果となった。実験の結果から、OERA 改良モデルは、打点と打率の両方を考慮できるモデルになりうる可能性を見出すことができた。

スクイズや盗塁など、ランナーの動きを取り入れるこ
犠打と犠飛を考慮したOERA改良モデルによる日本プロ野球打者の評価

参考文献

1) NHK放送文化研究所（世論調査部）：“2015年国民生活時間調査報告書”
2) 一般社団法人中央調査社：“第24回「人気スポーツ」調査”
4) 木下栄蔵：“野球における打者・投手の評価”オペレーションズ・リサーチ：経営の工学,VoL32,No10,689-697(1987)
6) NPB 日本野球機構：http://npb.jp/,平成28年11月30日
平行平均畳み込み処理とドロップアウトによる
畳み込みニューラルネットワークの汎化能力向上

山森 一人 a)・長野 泰久 b)・相川 勝 c)

Generalization Ability Improvement by Parallel Convolution and Dropout
Kunihito YAMAMORI, Yasuhisa NAGANO, Masaru AIKAWA

Abstract
Convolutional neural networks can express models very well, but this ability gives us overfitting problem.
To avoid overfitting problem, dropout technique are proposed. However, it is sometimes not enough because
convolutional neural networks include a huge number of weights and biases. In this paper, we propose a combination
of dropout technique and parallel convolution. In our method, neural network has two parallel convolution layer, and
average value of these two convolution layer is used as the input to the pooling layer. Our proposed neural network
could improve generalization ability about 4% for the unknown test patterns.

Keywords: Convolutional neural network, Over fitting, Dropout, Parallel convolution layer

1. はじめに

一般物体認識とは、画像内に含まれる物体を一般的な
名称でコンピュータに認識させることをいう1)。一般物
体認識を行うためには画像内に含まれる物体を検出する
必要があり、物体を検出・認識する手法としてテンプレ
ートマッチングや階層型ニューラルネットワークがある。

テンプレートマッチングでは、テンプレートを画像の
中で移動させながら、画像との類似度を計算して画像内
の物体を認識する。テンプレートマッチングでの画像認
識の精度は使用するテンプレートに大きく依存し、テン
プレートの変化が大きい物体に対しては認識精度が
低下してしまう。

従来の階層型ニューラルネットワークを用いて画像認
識を行う際、入力画像の特徴量を取得する必要がある。
特徴量には、Histogram of Oriented Gradients（HOG）や
Scale Invariant Feature Transform（SIFT）などがあるが、認識対
象に有効な特徴量をこれらの中から適切に選択する必要
があり、認識対象についての知識が必要とされる。

近年では、ディープラーニングと呼ばれる多層ニュー
ラルネットワークモデルが注目されており、その一つに
畳み込みニューラルネットワークがある2)。畳み込みニュ
ーラルネットワークは畳み込み層とプーリング層を複
数持ち、認識対象に合った特徴を自動で取得できるため、
画像を直接ニューラルネットワークへの入力とすること
ができる。つまり、事前に特徴量を求めることなく、認識対象に適した特徴を自動で取得できる。

畳み込みニューラルネットワークはモデルの表現力が
高く、学習誤差が小さくなりすぎて過学習に陥る場合が
ある。過学習を抑える手法の一つにドロップアウト4)が
ある。ドロップアウトは、ニューラルネットワークの順
伝播の際に一部のユニットを無効にすることでニューラ
ルネットワークの過学習を抑え、未知データに対する認
識性能を高める役割を持つ。ドロップアウトは当初、認
識を行う全結合層に適用されたが、畳み込み層に適用し
ても過学習を抑える効果があることが報告されている。

本研究では、畳み込みニューラルネットワークの過学
習をより抑制し、汎化能力を向上させることを目的とす
る。そのため、平行平均畳み込み処理とドロップアウト
を併用し、複数の特徴マップの平均値をプーリング層
への入力に用いることで畳み込みニューラルネットワーク
の過学習を抑制し、認識精度を向上させる目的を指す。

2. ニューラルネットワーク

2.1. ユニットの学習

図1のように、ニューラルネットワークを構成するユニ
ットには重み\(w \)とバイアス\(\theta \)と呼ばれるパラメータが
存在する。これらのパラメータは学習を通じて適切に設
定する必要がある。

式(1)で示す通り、ユニットは入力\(x \)と重み\(w \)の内積か
らバイアス\(\theta \)を減じた値に活性化関数\(f(u) \)を作用させた
値\(y \)を出力する。
ニューラルネットワークでは、式(1)の重み \(w \) とバイアス \(\theta \) を更新することで学習を進める。更新後の重みを \(w_{\text{new}} \), 更新前の重みを \(w_{\text{old}} \), 更新後のバイアスを \(\theta_{\text{new}} \), 更新前のバイアスを \(\theta_{\text{old}} \), 更新量を調節するために用いられる学習率を \(\eta \), ニューラルネットワークの出力と望ましい出力値との誤差を \(E \) としたとき、重みとバイアスの更新式は式(2), 式(3)でそれぞれ表される。

\[
\begin{align*}
w_{\text{new}} &= w_{\text{old}} - \frac{\eta \partial E}{\partial w_{\text{old}}} \quad (2) \\
\theta_{\text{new}} &= \theta_{\text{old}} - \frac{\eta \partial E}{\partial \theta_{\text{old}}} \quad (3)
\end{align*}
\]

2.2. 畳み込みニューラルネットワーク

畳み込みニューラルネットワークは、畳み込み層とプーリング層を持つニューラルネットワークである。畳み込み層では、図2に示す畳み込み層への入力と、図3に示す畳み込みフィルタの内積を取ることで特徴マップを得る。入力画像の要素を \(x(i,j) \), 畳み込みフィルタの要素を \(h(p,q) \) としたとき、畳み込み処理は式(4)となる。

\[
u(i,j) = \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} x(i-p,j-q)h(p,q) \quad (4)
\]

畳み込み処理ではストライドとパディングを設定する必要がある。ストライドとは、畳み込み処理を行う際のフィルタの移動量のことである。図4は、フィルタサイズが3×3で、ストライドが1の場合の例である。パディングとは、特徴マップの周りを任意の数値で埋めることである。ストライドを2以上に設定して畳み込み処理を繰り返すと、特徴マップのサイズが小さくなりすぎる場合がある。特徴マップのサイズが小さくなりすぎるのを防ぐためにパディングを行う。図5の例では、左がパディングを行わなかった場合の畳み込み処理で、右がパディングを行った場合の畳み込み処理である。図5のように、特徴マップの周りを0で埋めることをゼロパディングと呼ぶ。プーリング層では特徴マップの指定した領域内から特定の値を取得し、新しい特徴マップを生成する。畳み込みニューラルネットワークでよく使用されるプーリングにマックスプーリングがある。マックスプーリングでは特徴マップ中の特定の領域内の最大値を出力する。入力内の要素 \((i,j) \) を中心とする正方形領域 \(P(p,q) \) をとり、領域内の要素の集合を \(P_{ij} \) で表すと、プーリング
3. 提案手法

本研究では、ドロップアウトを畳み込み層にも適用するとともに、畳み込み層を平行して 2 つ設け、それらの各要素の平均値をプーリング層への入力とする手法を提案する。提案手法の構成を図 6 に示す。畳み込み層にドロップアウトを適用する例として、図 7 の特徴マップに

1.2	2.9	2.8	1.5
2.6	2.4	2.4	1.0
2.3	1.1	1.4	2.4
1.2	2.2	2.8	0

図 7. 特徴マップ。

1.2	2.9	2.8	1.5
2.6	2.4	2.4	1.0
2.3	1.1	1.4	2.4
1.2	2.2	2.8	0

図 8. ドロップアウト適用後の特徴マップ（削減率 20%）.
図 9. ドロップアウト適用後の特徴マップ（削減率 40%）.

4. 提案手法の評価

4.1. 評価方法

畳み込み層とプーリング層の組を 4 つ積層した後、全結合層、出力層と伝播する畳み込みニューラルネットワークにより提案手法を評価する。各層のユニット数は、予備実験により入力層 3,072、第一畳み込み層 8,192、第二畳み込み層 2,048、第三畳み込み層 512、第四畳み込み層 128、全結合層 80、出力層 10 とした。プーリング時のサイズは 2×2、ストライドは 2 とした。畳み込み層と全結合層の活性化関数にはシグモイド関数を使用し、出力層の活性化関数にはソフトマックス関数、誤差関数にはクロスエントロピー関数を使用する。出力層ユニットの出力は \(y_k \)、同ユニットの教師信号を \(T_k \) で表した時の誤差関数を式(6)に表す。

\[
F_n = \sum_{k=1}^{n} T_k \log O_k
\]

実験に用いる画像には CIFAR-10 を使用する。CIFAR-10 は 32×32 ピクセルの RGB 画像 6,000 枚×10 クラスのデータセットである。各クラス 5,000 枚を学習データ、1,000 枚をテストデータとする。出力層の 10 ユニットが認識する 10 クラスに対応する。全ての学習データでの学習が一巡を 1 epoch として、学習を 60 epoch 繰り返す。平行平均畳み込み層の 2 つの畳み込み層で削減率が同一にならないよう、削減率は 10%〜50% でランダムとし、1 epoch 毎に新たな削減率を設定し直す。

重み \(w \) は (-1,1) の乱数で、バイアス \(b \) は 0 で初期化する。比較対象は平行平均畳み込み層を用いない畳み込みニューラルネットワークとする。
以上の条件で実験を10回行い、正解率の平均を求める。
認識結果は、畳み込みニューラルネットワークの出力値が最も大きいユニットに対応するクラスとする。画像認識の精度は、認識結果が当該画像が属するクラスと一致した画像の枚数を正解数として、式(7)で示す正解率(accuracy)で評価する。

\[
\text{accuracy} = \frac{\text{正解数}}{\text{テストデータ総数}} \times 100\%.
\] (7)

4.2. 実験結果
提案手法の正解率を図10、畳み込み層のドロップアウトのみを適用する場合の正解率を図11に示す。
図10から、学習データの正解率は80%、テストデータの正解率は75%であり、図11から学習データの正解率は77%、テストデータの正解率は71%となり、提案手法によってテストデータの正解率を4%向上できた。
図11から、正解率が急に落ちているepochがあることが分かる。これは、直前のepochでは認識に有効だった特徴がドロップアウトで失われたため、正解率が低下したと考えられる。
図12に、学習終了時の全結合層への入力のうち、値が0である要素と0以外の要素の数を示す。図12から、平行平均畳み込み処理を行わない場合は、値0の要素数が提案手法の約2倍となっているため、畳み込み層へのドロップアウトの適用により、有効な特徴量を失いやすくなかったと考えられる。

5. おわりに
畳み込みニューラルネットワークは、大量の学習パラメータ持ち表現力が高く、学習データに対する認識精度が高くなりやすい。一方で、学習データを認識するために最適化されたパラメータでは、未知データに対する認識精度が低くなる過学習に陥ることがある。本研究では、畳み込みニューラルネットワークの過学習を抑制し、汎化性能向上を目的として、平行平均畳み込み処理とドロップアウトを併用する手法を提案した。実験の結果、提案手法は平行平均畳み込み処理を用いない場合と比べて、テストデータの正解率が4%向上し、畳み込みニューラルネットワークの汎化性能が向上したことを示した。
今後の課題として、誤差関数や活性化関数を変え、認識精度を向上させることが挙げられる。

参考文献
3) 久保陽太郎, “ディープラーニングによるパターン認識”，情報処理，Vol. 54，No. 5，pp. 500–508 (2013)。
5) “cifar-10データセット http://www.cs.toronto.edu/~kriz/cifar.html”
視野制限環境下での追跡問題における
強化学習の学習効率向上法

山森 一人 a)・吉田 雅也 b)・相川 勝 c)

Learning Efficiency Improvement of Reinforcement Learning in Restricted View Environment

Kunihito YAMAMORI, Masaya YOSHIDA, Masaru AIKAWA

Abstract

Reinforcement learning is one of the unsupervised machine learning methods. In reinforcement learning, multi-agent learning is usually used. In recent years, some researchers try to utilize drones in search of missing persons, but efficiency is not enough for the real world. In this research, we propose a multiple single role agent system which gives some roles for layered agents. Experimental results showed that our method was able to capture the target with 30% faster steps than the conventional method.

Keywords: Reinforcement learning, Layered agent, Role, Multi agent system

1. はじめに

強化学習(Reinforcement Learning: RL)①は教師なし機械学習の一つである。環境モデルの状態を知覚し、過去の経験から選択すべき行動を決定する学習エージェントの学習手段としてRLは用いられる。学習エージェントが選択した行動は環境モデルを進移させ、進移した環境モデルは学習エージェントに対して報酬を与える。学習エージェントは、行動の結果得られた報酬をもとに先の選択を評価し、学習を進める。RLの目的は、将来の報酬を踏まえた上で、最も多くの報酬を得る行動の選択方針を学習エージェントが学習することである。RLでは、実社会への応用を目指して、複数の学習エージェントを用いるマルチエージェント学習が用いられる。RLの代表的な問題に追跡問題があり、渡辺ら②によりRLの適用が行われている。

近年、行方不明者の捜索活動などでドローンの活用が試みられているが、ドローン1機に操縦者1人を要し、効率の悪さが指摘されている。賀木ら③は行方不明者の捜索を追跡問題に見立て、マルチエージェントシステム（Multi Agent System: MAS）を用いる手法を提案した。しかし、MASのエージェントは視野を360°としており、ドローンの多くが搭載しているカメラは全周カメラではないという現実に合致しない。

本研究では、エージェントを階層化し、更にエージェントに役割を付与する新たなMASの形として、マルチプール・シングルロール・エージェントシステム（Multiple Single Role Agent System：MSRAS）を提案する。具体的には、エージェントに指揮、監視、監視の3つの役割を付与し、指揮役を上位エージェント、追跡役を下位エージェントとして追跡問題の学習を行う。本研究の目的は、視野制限環境下の追跡問題において、提案手法により役割の異なるエージェントを協調行動させることで学習効率が向上することを示すことである。

2. 強化学習

2.1. RL の構成要素

RL は以下の要素から成り立つ。

● 報酬関数：環境モデルの状態が進移したときに、環境がエージェントに与える報酬を決定する。
● 優先関数：現在の状態において選択した行動の優先度を決定する。
● 環境モデル：エージェントが適応する環境を示す。本研究の場合、追跡問題のフィールドを指す。
● 方策：エージェントが行動を決定する方法を定義し、ε - greedy方策④が知られている。ε - greedy方策では、時刻tでの環境モデルの状態s_tにおいて行動a_tを選択する価値Q(s_t, a)をもとに、式(1)に従って行動a_tが選択される。

a) 情報システム工学科教授
b) 情報システム工学科
c) 宮崎大学工学部教育研究支援技術センター技術職員

δ(t) = \begin{cases} 1 & \text{t=1} \\ \epsilon & \text{0< t< ε } \\ 0 & \text{t> ε} \end{cases}

\begin{align*}
Q(s_t, a) &= \max_{a_t} Q(s_t, a_t) \\
\epsilon &= \frac{1}{t+1} \\
\end{align*}
ここで、$$\varepsilon$$は[0,1.0]の定数値である。$$\varepsilon$$-greedy方策では、価値が大きい行動ほど優先的に選択されるが、常に価値が最大の行動を選択すると同じ行動ばかりが選択され、最適な行動の選択の探索が行われなくなる可能性がある。そこで、$$\varepsilon$$の確率でランダムに行動を選択し、探索の範囲を拡げる。また$$A$$はエージェントの選択できるすべての行動である。

$$a_t = \begin{cases} \arg \max_{a \in A} Q(s_t,a), & 1.0 - \varepsilon, \\ \text{random}, & \varepsilon. \end{cases} \quad (1)$$

2.2. 学習の流れ

RLの流れを、Watkinsらが提案したQ学習を例に説明する。時刻$$t$$の環境モデル$$s_t$$において、行動$$a$$を実行したときの価値関数の更新手順を以下に示す。

STEP1: 現在の環境モデルの状態$$s_t$$を取得し、価値関数を用いて選択できるすべての行動の価値を求める。

STEP2: STEP1で得た価値をもとに、方策に従って行動を選択する。

STEP3: 学習エージェントの行動により環境モデルの状態が遷移し、報酬$$R_{t+1}$$が発生する。報酬$$R_{t+1}$$は報酬関数によって求められる。

STEP4: 得られた報酬$$R_{t+1}$$をもとに、エージェントは式(2)により、選択した行動の価値$$Q(s_t,a)$$の更新を行う。

$$Q(s_t,a) \leftarrow Q(s_t,a) + \alpha T_{Derror},$$

$$T_{Derror} = R_{t+1} + \gamma \max_{p \in A} Q(s_{t+1}, p) - Q(s_t,a). \quad (2)$$

ここで、$$T_{Derror}$$は予想していた価値と実際に得られた価値の差を表す。$$\alpha$$は学習率と呼ばれる[0,1.0]の定数である。一方、$$\gamma$$は割引率と呼ばれる[0,1.0]の定数である。

学習エージェントが状態を取得して行動を1回選択するまでをステップと呼ぶ。また、初期状態からステップを繰り返し、終了状態に到達するまでをエピソードと呼ぶ。

3. 提案手法

3.1. MARAS

本研究では、視野を制限したエージェントによる追跡問題を取り扱う。追跡問題では、学習エージェントは探求エージェント（Search Agent: SA）として獲物を追跡し、ターゲットを少なくステップ数で捕獲できる行動の選択方針を学習する。一般に、視野制限のないエージェントを用いた方が早くターゲットを捕獲できることは明白である。そこで本研究では、その差を埋めるためにMSRASを提案する。MSRASは、エージェントに役割を付与した階層型強化学習の呼称である。

図1の追跡役・監視役SAの視野。

本研究では以下の条件による追跡問題を用いて提案手法を評価する。

- 50×50の正方形のフィールドを想定する。
- ターゲット3体とSA15体を、重複しないランダムな位置に初期配置する。
- ターゲットとSAは1ステップで上下左右方向へ1マス移動、その場に停止の5種類の行動を選択できる。
- SAは各ステップで行動を選択し、ターゲットは5ステップごとに行動を選択する。
- SAには、自身の向きは図1内の状態を知覚する視野を持つ。図1では、MAが監視役SA、CAは追跡役SAを表し、詳細は3.2節で説明する。
- SAは、直前の移動方向を向いているものとする。図1のCAでは、矢印で移動可能な方向を示し、赤矢印はSAの向きを示す。
- 1体のSAがターゲットを見つけると、他のSAにターゲットの座標が伝達される。
- SAの視野内に障害物がある場合、障害物の向こう側は視野として考慮しない。

3.2. SAの役割

SAに付与する役割として、以下の3種類を設定する。

- 監視役：1体のみこの役割を設定する。環境内には存在せず、下位層のSAからの情報の統合、下位層のSAに対する情報伝達、下位層のSAの役割配分を決定する役割を持つ。
- 追跡役：環境内に複数存在し、ターゲットを追跡する。ターゲットを発見すると指揮役SAに報告する役割を持つ。
- 指揮役：
環境内に複数存在し、移動せず、ターゲットを監視する。追跡役 SA よりも広い視野を持つ。ターゲットを発見すると指揮役 SA に報告する役割を持つ。

図 2. 提案手法の学習モデル。

図 3. 上位層の指揮役 SA が考慮する環境の状態。

提案する学習モデルを図 2 に示す。上位層の SA は役割配分を、下位層の CA は停止を含む実行すべき行動を、MA はターゲットをできるだけ多く発見できる場所をそれぞれ学習する。上位層の SA は現在の状態から下位層の SA の現在の役割を評価し、役割を再配分するかどうかを選択する。また、下位層の SA に視野外のターゲットの位置を伝える。下位層の SA がターゲットを捕獲するために各役割の SA が実行すべき行動を選択する。上位層の SA、下位層の SA 共に Q 学習によって学習を行う。Q 学習の方策には ε-greedy 方策を用いる。

3.3. 上位層の学習

上位層の指揮役 SA は、下位層の SA に設定した役割配分で、全ターゲットを捕獲するのにかかったステップ数をもとに、選択すべき役割配分を学習する。上位層の指揮役 SA が考慮する環境の状態を図 3 に示す。図 3 では、下位層の SA の現在の視野を黄色のマスで表しており、指揮役 SA は黄色のマスのみを考慮する。上位層に対する報酬関数の設計を式 (3) に示す。

4. 提案手法の評価

4.1. 学習環境

評価実験は、3.1 節で説明した環境を用いた追跡問題で行う。実験時の学習パラメータは、追跡問題でよく用いられる値として α = 0.4, γ = 0.7, ε = 0.1 にそれぞれ設定する。また、各階層の学習で用いる報酬の値を表 1 に示す。表 1 中の a はステップ上限、b は発見したターゲットの数、t はステップ数を表す。これらの報酬は予備実験を行って定めた。

エピソード開始時にターゲットと SA をランダムに配置する。SA2 体がターゲットを対面 2 方向で挟んだ時、捕獲が完了したものをとする。以上の行程を全体ターゲット分行うか、36,000 ステップ経過するまで試行を続ける。エピソード 36,000 ステップの学習を 300 エピソード繰り返す。
4.2. 実験結果

図5に、CAが全ターゲットを捕獲するまでのステップ数の推移を示す。手法1は視野制限を行った従来手法、手法2は視野制限を行わない従来手法を示している。ランダムウォークは、学習を行わなかった場合での捕獲にかかるステップ数を示している。図5から、100エピソードくらいまで学習が急激に進み、250エピソード付近でほぼ学習が完了していることが分かる。提案手法は、視野制限を行ったCAのみの従来手法に比べ、捕獲に必要なステップ数が約8,000ステップ減少している。以上から、エージェントに役割を付与することにより、従来手法より早くターゲットを捕らえることができ、学習効率を向上できたといえる。

図6の100%積み上げグラフは、全エピソード終了までに上位層のSAが何体のCAを配分したかを示す。横軸はターゲットの捕獲数である。図6から、ターゲットの捕獲数が増加するにつれて、追跡役を少なく、監視役を多く選択する傾向にあることが分かる。これは、監視役の方が追跡役より視野が広いため、少しでもターゲットを発見する確率を上げるよう指揮役SAが学習を行った結果と考えられる。つまり、指揮役SAはターゲットに合わせた役割配分を学習できているといえる。

5. おわりに

本研究では、視野が制限された現実的な環境でも効率よくターゲットを捕獲するために、エージェントに役割を付与し、エージェント同士の協調行動の視点から行動を選択するMSRASを提案した。具体的には、エージェントに指揮、追跡、監視の3役のいずれかを設定し、階層化を行う。

追跡問題により、視野制限を行った従来手法と、ターゲットの捕獲にかかるステップ数の比較を行った。実験の結果、視野制限を行った従来手法よりターゲットを約8,000ステップ早く捕獲できることを示した。ターゲットの捕獲数が増加するにつれて、監視役が多く選択されていることから、指揮役SAがターゲットに合わせた役割の配分を行っていることを実験により示した。

今後の課題として、ターゲットが視野外時の探索手段がランダムウォークのみなので、効率的に探索するアルゴリズムを導入すること、エージェントに与える報酬の値をヒューリステティックに定めたので、報酬の値を学習するようなアルゴリズムの導入をすることなどが挙げられる。

表1実験時の各報酬値

<table>
<thead>
<tr>
<th>報酬</th>
<th>正の報酬</th>
<th>負の報酬</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{t+1}^f</td>
<td>$\lambda_f = 5$</td>
<td>$\mu_f = -0.05$</td>
</tr>
<tr>
<td>r_{t+1}^m</td>
<td>$\lambda_m = 50$</td>
<td>$\mu_m = -0.05$</td>
</tr>
<tr>
<td>R_{t+1}^g</td>
<td>$\lambda_g = 5$</td>
<td>$\mu_g = -10$</td>
</tr>
</tbody>
</table>

図5. 捕獲にかかるステップ数の推移。

図6. 学習後の上位層の選択の傾向。

参考文献

TSPにおける異種交叉型
異文化島モデルの求解性能評価

山森 一人 a)・図師 悠佑 b)・相川 勝 c)

Evaluation of Heterogeneous Crossover Island Model by TSP

Kunihito YAMAMORI, Yusuke ZUSHI, Masaru AIKAWA

Abstract

Traveling salesman problem (TSP) is one of the benchmark of combination problems. Hybrid genetic algorithm (HGA) which combines genetic algorithm and heuristics is a popular method to solve TSPs. Diversity of individuals in a population is an important point for GA, but some heuristic such as Lin-Kernighan method leads low diversity. In this research, we propose heterogeneous crossover island model for HGA. A population is divided into some sub-populations, and individuals in each sub-population are evolved with different crossover methods. Our proposed method gives better solution in earlier generation than HGA with homogeneous crossover.

Keywords: TSP, Genetic algorithm, Heterogeneous crossover, Island model

1. はじめに

巡回セールスマン問題（TSP: Traveling Salesman Problem）は、セールスマンが与えられた都市を一度ずつ訪問して出発点に戻るとき、移動距離が最短になる巡回経路（以下、最短経路と呼ぶ）を求める問題である。近年では、近似解法を使ったTSPの解法の研究が盛んである。しかし、有効な近似解法としてLin-Kernighan法（LK法）1)があり、大規模なTSPのベンチマークの最適解の多くは、LK法を改良したHelsgauns LK（LKH）法を用いた手法により発見されている。

別の近似解法として、生物の進化過程を模した遺伝的アルゴリズム（GA: Genetic Algorithm）2)がある。GAは、問題が多峰性である場合や探索領域が離散的である場合にも対応でき、局所探索に優れているヒューリスティクスと、大域的探索に優れたGAを組み合わせたハイブリッドGA（HGA: Hybrid GA）も大規模なTSPに対して有効であることが報告されている3)。

HGAの性質上、解の多様性を失い局所解に陥ったとき、解を改善することが難しくなる。LK法は強力であるために解の多様性を失いやすく、HGAは初期解によって局所解に収束し、局所解からの脱出の術を持たない。そのため、より良い解を発見するためには解の多様性を保つことが重要となる。

本研究では、解の多様性を保つために、原ら4)の提案した異文化型島モデルと複数の交叉法を組み合わせる手法を提案する。原の異文化型島モデルでは、島ごとに突然変異を変更することにより人为的に島の環境を変え、島ごとの解に個性を持たせて解の多様性を保つ。本研究の目的は、突然変異を一定とし、交叉法を島ごとに異なるものとした場合の、解の多様性を評価することである。単一の交叉法を採用した島モデルと比較して提案手法を評価する。

2. TSPの解法

2.1. Lin-Kernighan法

Lin-Kernighan法（LK法）は、繋がえる経路の数が一定である2-opt法に対し、繋がえる経路の数を固定せず、経路の切断と接続を、短くなる経路が存在しなくなるまで繰り返す手法である。以下にLK法の手順を説明する。なお、i,jを都市としたとき、i,jを直接結んでいる経路を(i,j)とし、(i,j)の距離をc(i,j)とする。以下、「経路」は上記の意味で用いる。

STEP1: 巡回経路をTとし、任意に都市t1を選び、t1の次に訪問する都市をt2とする。

STEP2: G = c(t1, t2), G := 0, i = 1とする。

STEP3: 式(1)を満たす都市t(i+1)を探す。条件を満たすt(i+1)がなければSTEP7に移行する。

\[G - c(t_i, t_{i+1}) > 0. \] (1)

STEP4: t(i+1)の前に訪問する都市をt(i+2)とし、G = G - c(t_i, t_{i+1}) + c(t_{i+1}, t_{i+2})とする。

STEP5: t(i+2)の前に訪問する都市をt(i+3)とし、(t_i, t_{i+1})と

a) 情報システム工学科学教授
b) 情報システム工学科
c) 宮崎大学工学部教育研究支援技術センター技術職員
(t_{i+2}, t_{i+3}) を切断し、(t_{i+1}, t_{i+2}) と (t_i, t_{i+3}) を繋ぐ。この時、式 (2) を満たすならば、G* = G とし、この巡回経路を T' とする。

\[G - c(t_{i+2}, t_{i+3}) > G*. \]

(2)

STEP6: i = i + 2 として、STEP3 に戻る。

STEP7: G* > 0 ならば T = T' とし、巡回経路を更新する。

STEP8: STEP1〜STEP7 を都市数分繰り返す。

2.2. 遺伝的アルゴリズム

GA は、生物の進化をモデルとしたアルゴリズムである。GA は、選択、交叉、突然変異などの遺伝的操作を繰り返し行い、より優秀な個体を生成する。並列化にも向いているため、遺伝的操作を並列処理することによって計算時間の短縮が期待できる。図 1 に一般的な GA の流れを示す。ハイブリッド GA（HGA: Hybrid GA）は、大域的探索に優れた GA と局所探索に優れているヒューリスティクスを組み合わせた手法であり、大規模な TSP に対して有効であることが報告されている。

図 1. 一般的な GA の流れ。

2.2.1. 枝交換交叉法

枝交換交叉法（EXX: Edge Exchanging Crossover）は、親に含まれる経路のみを用いて巡回経路を生成する手法である。EXX は、各親の巡回経路の中の経路を交換して子を生成する。親となる二つの巡回経路 T^X, T^Y から、以下の手順で子とする巡回経路を生成する。

STEP1: 親となる巡回経路 T^X, T^Y を,

\[T^X = (t_1^X \cdots t_K^X), \quad T^Y = (t_1^Y \cdots t_K^Y). \]

とする。親となる二つの巡回経路 T^X, T^Y に含まれる経路を通過順に並べ、

\[E^X = (e_1^X \cdots e_K^X), \quad E^Y = (e_1^Y \cdots e_K^Y). \]

とする。ただし、経路を（出発都市、到着都市）で表し、

\[e_k^X = (t_1^X, t_2^X, \cdots, t_{k-1}^X, t_k^X), \quad e_k^Y = (t_1^Y, t_2^Y, \cdots, t_{k-1}^Y, t_k^Y). \]

と表記する。

STEP2: T^X からランダムに e_k^X を選び、E^Y より e_k^Y と同じ始点を持つ e_k^Y を選び出す。

STEP3: t_{k+1}^Y を始点とする e_k^Y, および t_{k+1}^X を始点とする e_k^X を交換する。t_{k+1}^X = t_{k+1}^Y であれば終了する。

STEP5: e_k^X と e_k^Y の間にある部分巡回経路、

\[E_{X_k Y_k}^X = \{e_{k+1}^X e_{k+2}^X \cdots e_{X_k-1}^X\}, \]

を逆順にし、

\[E_{X_k Y_k}^Y = \{e_{k+1}^Y e_{k+2}^Y \cdots e_{Y_k-1}^Y\}. \]

とする。

STEP6: e_k^X と e_k^Y の間の E_{X_k Y_k}^X について、STEP5 と同様に E_{X_k Y_k}^Y を作成し、E_{X_k Y_k}^X を E_{X_k Y_k}^Y で置き換える。

STEP7: x_i = x_{i+1} または y_k = y_k として STEP3 に移行する。

2.2.2. 枝組換え交叉法

枝組換え交叉法（ERX: Edge Recombination Crossover）は、枝を組み合わせた方法である。ERX は、双方の親が共通して保有する枝をなるべく多く受け継ぐように子を生成する。以下に、ERX の手順を説明する。

STEP1: 二つの親が持つ枝を都市毎にリストにする。

STEP2: 空のリスト K を作成する。

STEP3: 都市 N を任意に選択して最初の都市とし、リスト K の先頭に挿入する。

STEP4: STEP1 で作成したリストから都市 N を削除する。

STEP5: 都市の枝が空でない場合、当該リストからランダムに都市を選択する。空である場合、新しいリストを未選択の都市からランダムに選択する。

STEP6: STEP4〜STEP5 を全ての都市を選択するまで繰り返す。

2.2.3. 部分貪欲交換法

部分貪欲交換法（GSX: Greedy Subtour Crossover）は、親個体の巡回経路の一部である部分経路をできるだけ多くの親個体に継承させる交叉法である。以下に、GSX の手順を説明する。

STEP1: 空のリスト K を作成する。

STEP2: 任意の都市を選択し、K にコピーする。

STEP3: コピーした都市 N を出発点として、親個体 T^X は進
行方向順に、親個体 \(T^* \) は進行方向逆順に、都市を交互に \(K \) にコピーしていく。この時、すでにコピーした都市があった場合は都市の選択を停止する。この操作を、選択できなくなるまでコピーを続ける。

STEP4：まだコピーしていない都市を、ランダムにそれぞれ \(K \) にコピーする。

2.3 島モデル

島モデルとは、複数の計算機による並列 GA の一種である。島モデルは個体を複数の島と呼ばれるサブ集団に分割し、各個体ごとに独立に探索を進めていく。ある一定の世代毎に、いくつかの個体を他の島にコピーする移民を行う。島ごとに個体数や突然変異率などを変化させたモデルを異文化型島モデルと呼ぶ。

3. 提案手法

本研究では、島ごとに交叉法が異なる異文化型島モデルを用いて HGA 操作を行う。島ごとに交叉法を変えることによって局所探索を改善し、その解を優先的に他の島に移すことにより解の多様性を保つつつ、一層の解の改善を目指す。

島モデルでの手順は以下の通りになる。

STEP1：個体のサブ集団である島を複数作成する。
STEP2：各島で独立に HGA の操作を一定世代行う。
STEP3：各々の島から一定数の個体を別の島へ移民させる。
STEP4：STEP2～STEP3 を指定した最大世代数まで繰り返す。

各島内で行う HGA 操作の手順は以下の通りになる。

STEP1：初期個体を生成する。
STEP2：個体を評価し、親となる個体を選択する。
STEP3：選択された個体で交叉を行い、新たな個体を一定数だけ生成する。
STEP4：一定世代ごとに LK 法を行う。
STEP5：STEP2～STEP4 をある一定の世代数繰り返す。

4. 実験と評価

4.1. 実験方法

提案手法の評価のために、単一の交叉法を採用した HGA と解の良さを比較する。解の良さは式 (3) で定義する Quality で評価する。式 (3) での \(L \) は得られた巡回路の長であり、\(L_{opt} \) は最適解、または現在分かっている準最適解である。Quality が \(0 \) に近いほど最適解に近い解となる。

\[
\text{Quality} = \frac{(L_{opt}-L)^2}{L_{opt}}.
\]

実験に使用する TSP は、TSPLIB で公開されている 48都市の att48、532 都市の att532、1002 都市の pr1002 の3 間を用いる。島の数は使用する交叉法に合わせて 3 つとする。部分集合の個体数は 50 とし、20 世代ごとにランダムに選んだ 20 個体を他の島に 10 個体ずつ移民する。世代は最大 10,000 世代とする。実験は、各 TSP に対し提案手法と単一の交叉法を採用した HGA で 10 回ずつ行う。

4.2. 実験結果と考察

図 2 は att48 での平均 Quality、図 3 は att532 での平均 Quality、図 4 は pr1002 での平均 Quality、図 5、図 6 はそれぞれ、att532 での 10 回の実験のうちの 1 つの、全ての解の Quality の分布と、異文化型島モデルの解の Quality の分布である。

図 2 から、Quality は異文化型島モデルが、2.7、EXX のみが 3.4、ERX のみが 8.8、GSX のみが 8.5 であることが分かる。図 3 から、Quality は異文化型島モデルが 37.5、EXX のみが 42.4、ERX のみが 50.0、GSX のみが 47.9 であることが分かる。図 4 から、Quality は異文化型島モデルが 60.2、EXX のみが 65.6、ERX のみが 69.6、GSX のみが 67.6 であることが分かる。提案手法は、単一の交叉法を用いた島モデルと比較すると 9%～13%ほど解を改善することができた。図 5 から、得られた最短巡回路数の分布を示す。
と最長巡回経路の Quality 差は、異文化型島モデルが 12.5、EXX のみが 0.2、ERX のみが 6.3、GSX のみが 17.6 となることが分かる。Quality 差のみだと GSX が 17.6 で一番良いように見えるが、図 5 から分かるように良い解が存在しない点に問題がある。図 6 から、提案手法は Quality が 49.7 の個体が 12 個体と目立つが、全体の個体の 8%にすぎず、残りの 92%は満遍なく分布していると言える。このことから、提案手法では解の多様性が保たれていることが分かる。すなわち、島ごとに交叉法が異なり解の多様性が高いため、解空間を幅広く探索し、解の改善を行うことができたと言える。

5. おわりに

局所探索に優れているヒューリスティクスと大域的探索に優れた GA を組み合わせた HGA は、大規模な TSP に有効であることが報告されている。GA の性質上、解の多様性を失い局所解に陥ったとき、解を改善することが難しくなる。そのため、より良い解を発見するためには解の多様性を保つことが重要である。

本研究では、異文化型島モデルを用い、交叉法を島ごとに変更することで解の多様性を保つ手法を提案し、通常の島モデルと比較しその改善を図ることを目的とした。実験の結果、提案手法は解の多様性を保つことができ、3 種の TSP においては、単一の交叉法を用いた島モデルより 9%〜13%短縮された良い解を得ることができた。

今後の課題としては、使用する交叉法を増やすことが挙げられる。また、突然変異率を変化させていないので、交叉法ごとに加え突然変異率を変化させることも挙げられる。

参考文献

Early Detection of Lung Cancer by Artificial Neural Network and Fuzzy Inference System

Khaing Zin Htwe a), Kunihito YAMAMORI b), Tetsuro KATAYAMA c), Tin Mar Kyi d)

Abstract

Over the past few years, a great number of attempts have been made to decrease the death rate of lung cancer. Recent reports showed the early diagnosis of lung cancer by screening programs is one way to reduce lung cancer mortality. Moreover, radiological examination consists of a large number of images per patient that leads to the manual diagnosis with being consumed much time and energy of radiologists. Computer-aided Detection (CAD) in radiology can provide a functional and advantageous way to physicians aiming to improve accuracy and to assist in early detection of cancer, and to save the time of radiologists in exam evaluation. Using given input/output data values, the proposed ANFIS can build mapping based on both human knowledge (fuzzy if-then rules form) and hybrid learning algorithm. In our proposed work, both image processing techniques and ANFIS have been employed to reduce false detection rate and to get more efficient and accurate CAD system.

Keywords: ANFIS, CAD, False Detection Rate, Hybrid Learning

1. INTRODUCTION

Comparing with the other type of cancer, lung cancer is the most causing death for both men and women based on World Health Organization (WHO) data with 19.39% from all cancers [1]. Every year, more than 1.2 million lung cancer cases have been diagnosed.

A pulmonary nodule usually has a spherical shape; however, it can be distorted by surrounding anatomical structures such as vessels and the pleural surface. Generally, the smaller the nodule, the more likely it is to be benign: 80% of benign nodules are less than 20 mm in diameter [2]. However, small size alone does not exclude lung cancer because 15% of malignant nodules are less than 10 mm in diameter and approximately 42% are less than 20 mm in diameter.

The margins and contours of a nodule can be classified as smooth, lobulated, irregular, or spiculated. Mostly, nodules whose margins are smooth, well-defined are benign. However, 21% of malignant nodules have well-defined margins. Benign cavitory nodules generally have smooth, thin walls, whereas nodules that are malignant typically have thick, irregular walls. A lobulated contour is related with uneven growth, which implies malignancy. However, lobulation also occurs in up to 25% of benign nodules. A nodule whose margin is irregular or spiculated with distortion of adjacent vessels is likely to be malignant. If calcification is not apparent at visual inspection, its presence can sometimes be inferred from CT attenuation values determined with CT densitometry.

We shall use the four categories of nodules:
(a) Well-circumscribed nodule which is located centrally in the lung without being fastened to vasculature;
(b) Vascularized nodule which has significant connection(s) to the neighboring vessels while located centrally in the lung;
(c) Pleural tail where the nodule is near the pleural surface, linked by a thin structure; and
(d) Juxta-pleural where a significant portion of the nodule is coupled the pleural surface.

2. RELATED WORK

On August 2012, Mabrouk et. al [3] published their work with the optimal results of 98% accuracy by ANN(Artificial Neural Network) and 96% accuracy by KNN(K-nearest Neighbors), respectively in detecting large lung nodules with an equivalent diameter ranging from 22.65 mm to 41.62 mm. In my proposed work, nodules that are in the earlier stage of an equivalent diameter ranging from 3 mm to 30 mm would be examined by using image processing and ANFIS all together.
3. PROPOSED METHODS AND MATERIALS

Our system has been fully implemented in Matlab 2015b.

3.1 Image Data Collection

We have collected 131 chest CT-scans of lung images from LIDC database [4], which are stored in 512x512 in size and in DICOM format. Seven academic centers and eight medical imaging companies collaborated to create this data set which contains 1018 cases. The calibration set of SPIE-AAPM Lung CT Challenge Database [5] have also been collected to test the proposed work, which stored 10 contrast-enhanced CT scans. The calibration set contains five CT scans with malignant nodules and five CT scans with benign nodules. The organizers have selected a single nodule per CT scan for analysis. The location of each nodule is specified in an associated Excel file that includes case name, the coordinates of the approximate nodule centroid, and the ‘truth’ label (malignant or benign). Thus, these two different data sets are dissimilar in contrast or quality of CT images.

3.2 Image Processing

3.2.1 Image Pre-processing

In the image processing stage, we introduced with image enhancement to improve interpretability or perception of information in images for human vision or to provide better input for the next image processing techniques. Since the noise included in the images is of Gaussian noise, salt and pepper noise and white noises, firstly we use the median filter followed by the Gaussian smoothing to remove noise and smooth the images. And then, the images are adjusted to get the enhanced images.

3.2.2 Intensity based Image Segmentation

The segmentation of lung nodules is a very challenging problem due to inhomogeneity in the lung region, pulmonary structures of similar intensities such as arteries, veins, bronchi, and bronchioles, and different scanners and scanning protocols.

The advantages of thresholding are fast processing speed, also the smaller storage space and ease in manipulation as compared with gray level image.

By simply applying threshold to the image, we cannot get the whole lungs part from the background because there are high similarity between the gray levels of the lungs and the image background as shown in Figure 1. So, there is a need to remove efficiently background from the image. For this purpose, we have used the adaptive thresholding method [6].

Adaptive threshold overcomes the imitation of conventional threshold method when the background of image or the intensities’ levels are strongly inhomogeneous.

The process is as the following:

Step 1: Set the mean intensity value T of the whole image as the initial thresholding value;

Step 2: Segment the lungs image into two groups R_1 and R_2 based on this initial value; R_1, if the pixel values are larger than T and otherwise R_2;

Step 3: Calculates the mean values of the two regions, T_1 and T_2;

Step 4: Find the average value of the two regions and set it as the new threshold value of the two areas;

Step 5: According to this new value, segment the areas into the new two regions;

Step 6: Repeat the steps from 2 to 5 until the new threshold value is unchanged. Figure 2 shows the result after applying adaptive thresholding.

3.2.3 Mathematical Morphology

After binarization, the area of the surrounding air need to be removed to get the two lobes of the lung, which are caused by the attenuation in order to reduce the strength of X-rays. To enhance the shapes of the segmented image, reduce the false detection rate and avoid missing nodules attached to lung walls, morphological functions were employed in this proposed system.

In this step, we filtered noise by opening and closing operations as morphological pre-processing. And the edge of the lungs was then detected by canny method. But since the edges are thick, we have processed this by thinning operation to reduce the pixels of the boundary until there is only one pixel on that boundary.

![Fig. 1. Shows Original lung CT scan.](image-url)
3.2.4 Nodule Extraction

We cropped the image that includes the ROI (Region of Interest) and the image has then been thresholded to remove the surrounding air of the lungs as shown in Figure 3. After then the clear border object has been processed on the thresholded image, which removes all connected components of a binary image that touch any image border, as shown in Figure 4. To identify the set of pixels belonging to the inner parts of the two pulmonary lobes, we have employed the region filling technique. Finally, in order to extract only ROIs, the resulted filled image was multiplied by the cropped image. Figure 5 shows the final result of image processing stage.

3.2.5 Connected Components Labelling

The connected components labeling method [7] processes the units changed from pixels to the regions. All pixels whose each of values are of binary-1 and are connected to each other by a path of pixels all with value binary-1 are given the same identifying label. The label is the unique identifier for a potential object region. Connected component labeling is a grouping operation. The labeling operation used in this algorithm is based on Run-length encoding of the binary image. This algorithm starts with Run-length encode of the input image then scan these runs and assigning preliminary labels and recording label equivalences in a local equivalence table before resolving the equivalence classes and finally re-label the runs based on the resolved equivalence classes.

3.3 Feature Analysis

After the segmentation is performed, the features like geometric and intensity-based statistical features are extracted from each ROI to classify as malignancy, benign or other cases by ANFIS. These geometric features are considered to be extracted; area, diameter, roundness, perimeter, eccentricity, solidity, and convex area.

3.3.1 Geometric Features Extraction

- **Area**

 Area specifies the actual number of pixels in the region.

- **Diameter**

 Diameter specifies the diameter of a circle with the same area as the region. Diameter is computed by the Eq.(1).

\[
\text{Diameter} = \sqrt{\frac{4 \times \text{Area}}{\pi}} \tag{1}
\]
• **Perimeter**
 Perimeter identifies the distance around the boundary of the region.

• **Roundness**
 Roundness denotes the circularity of the region. Roundness is computed by the Eq.(2).
 \[
 \text{Roundness} = \frac{4\pi \text{Area}}{\text{Perimeter}^2}
 \]

• **Eccentricity**
 The eccentricity is defined by the ratio of the distance between the foci of the ellipse and its major axis length. The value is between 0 and 1.
 An ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment.

• **Solidity**
 Solidity is the proportion of the pixels in the convex hull that are also in the region. Solidity is computed by the Eq.(3):
 \[
 \text{Solidity} = \frac{\text{Area}}{\text{ConvexArea}}
 \]

• **ConvexArea**
 It specifies the number of pixels in ‘ConvexImage’.

3.3.2 Texture Features Extraction

After calculating of physical dimensional measures, then texture feature extraction is also calculated on the quantized image by using Gray level co-occurrence matrix (GLCM) method, one of the most known texture analysis method. A gray level co-occurrence matrix is a second order statistical measure introduced by Haralick [8]. Statistical parameters calculated from GLCM values are entropy, contrast, correlation, energy, and homogeneity. The later four features are calculated by `graycoprops()` in Matlab by taking 2 displacements as [1, 2] and four orientations as [0, 45, 90, 135] into account.

• **Entropy**
 It represents the entropy of grayscale image. Entropy is a statistical measure of randomness that can be used to characterize the texture of the input image. Entropy is defined by Eq.(4).
 \[
 \text{Entropy} = -\sum p \log_2 p
 \]
 Where, \(p \) represents each intensity values of the region

• **Contrast**
 Contrast focuses on the intensity contrast between a pixel and its neighbor over the whole image.
 Contrast is 0 for a constant image. The property contrast is also known as variance and inertia.

• **Correlation**
 Correlation measures how correlated a pixel is to its neighbor over the whole image.
 \[
 \text{Correlation Range} = [-1 1]
 \]
 Correlation is 1 or -1 for a perfectly positively or negatively correlated image. Correlation is NaN for a constant image.

• **Energy**
 Energy returns the sum of squared elements in the GLCM.
 \[
 \text{Energy Range} = [0 1]
 \]
 Energy is 1 for a constant image. The property Energy is also known as uniformity, uniformity of energy, and angular second moment.

• **Homogeneity**
 Homogeneity calculates the closeness of the distribution of elements in the GLCM to the GLCM diagonal.
 \[
 \text{Homogeneity Range} = [0 1]
 \]
 Homogeneity is 1 for a diagonal GLCM.

3.4 Classification

The ANFIS is a fuzzy Sugeno model that is put in the structure of adaptive systems to make easy learning and adaptation [9]. A combination of least-squares and back propagation gradient descent methods were used for training FIS membership function parameters to generate rules for a given set of input/output data. Such structure makes the ANFIS modeling to be more efficient and less reliant on expert knowledge.

4. RESULTS AND DISCUSSION

To evaluate the performance of the proposed CAD system, 140 patients’ images with nodules that can be obtained with diagnosis truth, which are obtained from LIDC database and SPIE-AAPM Lung CT Challenge, Calibration Set were used. The targeted nodules’ sizes are of 3mm to 30 mm. Total of 140 nodules are extracted by the CAD system and 139 objects are true positives.
A positive CAD result is considered to be any nodule in which the CAD identified a ROI. A negative CAD result is defined as any chest radiograph no ROI was identified by the CAD system.

True positives = both a positive CTA (CT Angiography) finding and a positive CAD result in the same region of the lung (Cancer classified as cancer)

True negatives = a negative CTA with a negative CAD result (Non-cancer classified as non-cancer)

False positives = CAD-generated ROIs without a corresponding nodule on CTA (Non-cancer classified as cancer)

False negatives = nodules seen on the CTA without a corresponding CAD ROI (Cancer classified as non-cancer)

If there were nodules outside of the CAD reference range on CTA or chest radiography, these nodules were ignored. There were 436 cases in which there was no CAD ROI, and the CTA showed no nodules between 3 and 30 mm. The only one false positive ROI was identified by the proposed system. 17 cases in which most nodules were juxta pleural whose body is partially on the lung walls were missed by the CAD system. Table 1 shows the results of our system and some results of using image processing techniques can be seen in Figure 6.

The specificity, accuracy, precision and recall of the system are calculated as the performance of the CAD system by using the following formulas:

Specificity = TN/ (TN + FP) (5)
Accuracy = (TP + TN)/ (TP + FP + TN + FN) (6)
Precision (or Sensitivity) = TP/ (TP + FP) (7)
Recall = TP/ (TP + FN) (8)

Sensitivity: It measures the proportion of actual positives which are correctly identified. That is the ratio of cancerous region correctly identified as a cancerous region.

Specificity: It measures the proportion of negatives which are correctly identified. The ratio of non-cancerous region correctly identified as a non-cancerous region.

Accuracy: Accuracy is a statistical measure of how well a classifier correctly identifies or excludes a condition. The accuracy is the proportion of true results (both true positive and true negative) in the population.

In Table 2, we can see the performance of the CAD system.

<table>
<thead>
<tr>
<th>Evaluation Parameters</th>
<th>Performance Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.97</td>
</tr>
<tr>
<td>Precision</td>
<td>0.99</td>
</tr>
<tr>
<td>Recall</td>
<td>0.89</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1. Nodules Detected with Diagnosis Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive CTA</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Positive CAD</td>
</tr>
<tr>
<td>Negative CAD</td>
</tr>
</tbody>
</table>

For the case of classification, we provide results for three situations, 1 for benign objects, 2 for suspected cases and 3 for malignancy and then set the desired output signals to the training and testing datasets to classify the cases. And the datasets were loaded from the workspace and the error tolerance is fixed as 0. The training was taken place through the epoch 80 and when the epoch was completed, it showed that the inputs and trained FIS outputs are matched with the average trained error of 0.0000009 as shown in Figure 7 and Figure 8. After training was
completed, the test data were tested against the trained parameters and the plot then shows that the data are correctly classified with the slight deviations and the average testing error of 0.9 as shown in Figure 9. In Figures 8 and 9, the blue symbols are denoted as the targeted outputs and the red ones are represented as FIS outputs.

5. CONCLUSION

LIDC-IDRI CT scans were collected from several different institutions. Consequently, the evaluation of such database was much more challenging than an evaluation on images acquired from a single institution. To get the better reliability of the system, some CT scans from SPIE-AAPM Lung CT Challenge Database were also applied altogether. Some of the 140 patient’s dataset are trained and the other independent nodules are tested against the trained data. The performance of the proposed method is acceptable with accuracy 97%, specificity 99%, and precision 98%.

REFERENCES

寺野貴洋（物質環境化学専攻）ビフェニル/PCB分解系遺伝子をコードするゲノミックアイランドの構造解析
錦戸拓哉（物質環境化学専攻）水溶性ポリマー内包マイクロカプセルの開発と除湿プロセスへの応用
西田美咲（物質環境化学専攻）ビフェニル・オキシアビエタ・トリエンの合成および天然フェノールおよびキノンへの変換
演田昌汰（物質環境化学専攻）マイクロ波照射によるセルロース直接糖化に必要な条件の抽出と最適化に関する研究
平野啓（物質環境化学専攻）リボソーム内包クライオゲルの調製・評価とアミノ酸分子認識による吸着特性
福丸雅也（物質環境化学専攻）多孔質ポリマー粒子に含浸担持した金属抽出剤の抽出特性および抽出機構の解明
浦梨恵子（物質環境化学専攻）ポリアミン系抽出剤の創製とレアメタルの回収および有害金属の除去への応用
宮島亘（物質環境化学専攻）シードモナス細菌のビフェニル代謝下流経路の調査に関する研究
山口兼侍郎（物質環境化学専攻）硫黄粉末内包温度応答マイクロカプセルの開発と応用
山下創史（物質環境化学専攻）パクリタキセルの分散剤として有効な消化ペプチドの探索
Dolgormaa Munkhbat (物質環境化学専攻) 総合素材資源を利用した吸着剤の開発と有害金属除去への応用

Enkhzaya Solongo (物質環境化学専攻) Heavy metals removal from wastewater by adsorption using adsorbents prepared from biomass of Mongolia

朝倉匡俊（電気電子工学専攻）電力機器における部分放電検知を利用した絶縁劣化診断システムの開発
家長真大（電気電子工学専攻）スイッチング回路を用いた水晶発電装置の開発
池田凌（電気電子工学専攻）レーザー生成ナトリウム蒸気の時間分解吸収分光測定
石川敏嗣（電気電子工学専攻）デシカント空調システムにおける外気の絶対湿度とシステム運転方式との関係
石津智子（電気電子工学専攻）パラフィン系抽出剤の創製とレアメタルの回収および有害金属の除去への応用

Enkhzaya Solongo (物質環境化学専攻) Heavy metals removal from wastewater by adsorption using adsorbents prepared from biomass of Mongolia

今村公紀（電気電子工学専攻）ディジタルスタンダードセルを用いたオペアンプの設計に関する研究
岩崎達也（電気電子工学専攻）中空ファイバーを用いた真空紫外アルゴンエンジンの設計に関する研究
内原将幸（電気電子工学専攻）多孔質ポリマー粒子に含浸担持した金属抽出剤の抽出特性および抽出機構の解明
飯島信也（電気電子工学専攻）MOSFETの全反転領域におけるトランジスタ原理に関する研究
姥原正裕（電気電子工学専攻）硫黄及びフッ素を添加したアルミン酸ストロンチウム蛍光体の応力発光特性
岡崎翔吾（電気電子工学専攻）表面層電位を用いた顕微鏡像の評価システムの開発
川原文哉（電気電子工学専攻）勝利素子を用いたロコモ年齢算出方法に関する研究
木津駿斗（電気電子工学専攻）ユーロパミーム混合アルゴン酸ストロンチウムの生成および異常酸化物添加による発光特性
児島賢也（電気電子工学専攻）複数の特徴量を用いた類似画面検索に関する研究
柳原昌太（電気電子工学専攻）3次元人体モデルによる電波遮蔽特性の数値的検討
杉原崇明（電気電子工学専攻）フェードト相レーザーを用いたダブルバランスによる微細加工に関する研究
鈴木隆哉（電気電子工学専攻）前後二台のカメラを用いたドライバーの異常行動検知に関する研究
須見公祐（電気電子工学専攻）Analysis of Behavior in Cattle Delivery Using Video Monitoring

鶴添文人（電気電子工学専攻）高圧クリプトンガス中におけるクリプトンダイマーの生成
出口竜也（電気電子工学専攻）交流・直流課電によるポリマー材料の耐電圧特性評価に関する研究
室島大雅（電気電子工学専攻）界面活性剤混入下での水中プラズマ放電の効率特性の評価に関する研究
富永大（電気電子工学専攻）放電プラズマを用いたマンゴー炭疽病の防除に関する研究
中尾晃（電気電子工学専攻）高温加熱電気エンジンと車載用オルタネーターで構成された太陽熱発電システムの発電特性

仲川豪志（電気電子工学専攻）原料ガス断続供給法を用いたGaAsナノワイヤの作製とその形状及び発光特性
長川裕耶（電気電子工学専攻）2次元部屋に存在する人体モデルによる電波伝搬損失の数値的検討
沼地真明（電気電子工学専攻）満電流模式による金属試料の電気化学的評価に関する研究
橋本光史（電気電子工学専攻）真空紫外光により誘起される光脱離現象を用いた有機物の表面分析に関する研究
修士論文題目一覧

前澤 本 英 明（電気電子工学専攻）	水道工業のインフラ整備におけるストック・ストレージ機能の実現化に関する研究
比江島 大 輝（電気電子工学専攻）	高圧電気エネルギーデバイスの機能発現と応用に関する研究
平島 俊 紀（電気電子工学専攻）	AEセンサを用いた配電機器の絶縁劣化診断に関する研究
藤 原 悠 貴（電気電子工学専攻）	人体内部インピーダンスに及ぼす被験者のBMI及び腕の屈伸の影響
古川 慶 喜（電気電子工学専攻）	加速度情報とジャイロ情報を組合せたスマートフォンでの高精度な歩幅推定に関する研究
真子 翔 太（電気電子工学専攻）	Research on High CMRR and Wideband Current Feedback Instrumentation Amplifier Using Current Conveyors
松永 佑 太（電気電子工学専攻）	Si(111)清浄表面上の極薄Au薄膜作製のための基礎研究
松本 大 明（電気電子工学専攻）	素子選択手法を用いた複数枚圧電素子による呼吸・心拍計測に関する研究
水間 健 仁（電気電子工学専攻）	領域分割法に基づく並列数値電磁界解析の高性能化と電気機器への適用手法に関する研究
三井 竜 明（電気電子工学専攻）	Scattering Problem of EM Wave by Cylindrical Object Using Multigrid Method
矢野 優（電気電子工学専攻）	ワイヤレス給電回路の高周波領域における動作について
山本 孝平（電気電子工学専攻）	水素生成システムの応答を用いた動作解析について
吉田 宽 貴（電気電子工学専攻）	原料ガス断続供給法により作製されたGaAsナノワイヤの構造及び結晶性のラマン分光法を用いた評価
程 玉（電気電子工学専攻）	EOGとsEMGを用いたSVMによる瞬き検出に関する研究
PAGAWAK ALFIUS	（電気電子工学専攻）太陽光発電システムのオンライン動作解析について
Barry Ibrahima Djena	Numerical Examination of EM Waves in a Square Lattice Photonic Crystal Fiber with Kerr Material
Maitai Christoph Mutuma	Numerical Analysis of Voltage Variation of HV Distribution Network installed with Both Shunt Capacitors and PV Generators.
Moe Zet Pwint	（電気電子工学専攻）A Content Based Image Retrieval System for Trademarks of User Interest
Swe Nwe Nwe Htun	（電気電子工学専攻）A Hybrid Information Ranking System for Web Image Search
穴井 靖悟（土木環境工学専攻）	鋼矢板の引抜きに伴う周辺地盤の変形に関する研究
河原田 尚 紀（土木環境工学専攻）	家庭生活ごみ自家処理の促進のための堆肥化手法提案に関する研究
近藤 篤 史（土木環境工学専攻）	リンク途絶の影響把握のための経路交通量推定モデル
寺西 康太郎（土木環境工学専攻）	レクレーションビーチにおける細菌の汚染実態と菌叢解析に関する研究
都地 亮博士（土木環境工学専攻）	風作用下における越波量と飛沫量の評価に関する研究
富永 雅（土木環境工学専攻）	郊外道路の自動車通行空間整備に関する基礎的研究 - 国道220号の場合 -
橋口 武志（土木環境工学専攻）	廃石膏を混合した高分子凝集剤による畜産排水の凝集処理に関する研究
平井 貴 大（土木環境工学専攻）	牛糞尿を用いた微生物燃料電池の性能向上に関する研究
場田 正 治（土木環境工学専攻）	RC構造物における破壊実績のひび割れ抑制効果に関する基礎的研究
柳田 眞 祐（土木環境工学専攻）	地震断層すべり時間関数の不規則性と観測地震動の再現解析
Bambang Jatmika	（土木環境工学専攻）Evaluation of community based waste management in Magelang Municipality Indonesia
Frandos Hoper Hutauruk	（土木環境工学専攻）Analysis of Deforestation and Vulnerability of Gunung Palung National Park in Indonesia by Using Multi-Criteria Evaluation
Raduys Ramli Hindaran	（土木環境工学専攻）Solid waste flow and composition determination for the sustainable waste management in Gili Trawangan
レーザ加熱によりスロットリングを実現する固体マイクロスラスタ

レシプロ圧縮機の振動抑制技術に関する研究

人工衛星搭載用の小型ハイブリッドマイクロスラスタの研究

電磁力励振方式を採用した磁気浮上型攪拌翼を有する振動型ミキサーの開発

ELID 研削法を用いたメタルオンメタル人工股関節摺動面の潤滑性評価

小型コンテナモデルの遮熱塗装による冷蔵負荷削減効果に関する研究

鶴田勝（機械システム工学専攻）粒状体ダンパの制振特性の解明

高精度連続定量型コーンフィーダの開発

小型コンテナモデルの遮熱塗装による冷蔵負荷削減効果に関する研究

廃棄 GFRP を再利用したセラミックスの濁水濾過材への応用

ビームダウン式太陽集光装置のための蓄熱装置に関する研究

Ni-W 電着工具の製作に関する研究―めっき膜の評価と製作した工具による加工ー

粒状体ダンパの制振特性の解明

モルタル円筒ブロックの蓄熱量に及ぼすフェロニッケルスラグの配合による効果

自己同期現象を利用した手持ち振動工具の開発

アークジェットのカソードの長寿命化に関する研究

ビームダウン式太陽集光装置のためのレシーバに関する研究

燃焼室壁面における熱流束の光学計測に関する研究

自己同期現象を利用した手持ち振動工具の開発

人体の距離差に基づく観測及び動作モデルを用いた下肢動作補助ロボットの研究開発

自己同期現象を利用した手持ち振動工具の開発

無駆動ジョイントをもつマニピュレータの振動抑制に関する研究

ビームダウン式太陽集光装置のためのレシーバに関する研究

燃料系による観測及び動作モデルを用いた下肢動作補助ロボットの研究開発

Ball and beam system のロバスト制御に関する研究

非駆動ジョイントをもつマニピュレータの振動抑制に関する研究

Ball and beam system のロバスト制御に関する研究

オセロゲームの解析における探索空間の削減

DDoS 攻撃ログデータ解析による人と攻撃通信判別に関する研究

金属周期構造における電磁波散乱特性に関する数値的検討

携帯端末の歩容認証システムに関する研究

ベイズ回帰モデルを用いた血友病 A の解析

考慮空間の削減

戦略的目指す成果目標の策定に関する研究開発

Process Improvement

Early Detection of Lung Cancer by Artificial Neural Network and Fuzzy Inference System
宮崎大学工学教育研究部学術刊行物規程

第1条 宮崎大学工学部（以下「本学部」という。）は、学術刊行物として宮崎大学工学部紀要（以下「紀要」という。）を毎年1回発行する。

第2条 紀要は、本学部における学術研究の成果並びに活動状況を発表し、学内外との学術交流を果たすことを目的とする。

第3条 投稿代表者は、工学教育研究部の教員とする。

第4条 紀要の編集は、宮崎大学工学教育研究部情報広報委員会（以下「情報広報委員会」という。）が行う。

第5条 投稿締切日、発行部数、著書への無償配布部数、発行経費の負担方法、その他発行に関連する必要事項は、情報広報委員会で決定するものとする。

第6条 紀要への投稿は、情報広報委員会の指定する様式に従って行い、情報広報委員を通じて行うものとする。

第7条 紀要への投稿物の掲載に当たっては、次に掲げる区分を設ける。

⑴ 学術論文（総合論文）
⑵ 学術論文（研究報告論文）
⑶ 資料
⑷ 研究活動状況報告

2 前項第1号への投稿は、和文又は英文を原則とし、未発表の研究論文、既発表論文の集大成又は内容を追加・補充し、論文としたものを原則とする。

3 第1項第1号は、情報広報委員会が査読者を選出し、審査の後、掲載の可否を決定する。

4 第1項第2号への投稿は、和文又は英文を原則とし、未発表論文であるものとする。その掲載に当たっては、関係教員了承済みのものを原則とする。

5 第1項第3号への投稿は、調査・実験などで得られた有益な資料などを対象とし、その採否は情報広報委員会が行う。

6 第1項第4号への投稿は、その前年に発表した論文・著書・講演、解説、展望などの報文の題名、学内発表の研究題目、科学研究費補助金による採択課題名等を対象とし、当該者からの提出資料に基づき編集する。

第8条 紀要掲載された投稿物の著作権は、原則として本学部に帰属し、本学部はそれらの投稿物を「宮崎大学学術情報リポジトリ」に登録できるものとする。

第9条 第3条、第6条及び第7条に定めるもののほか、投稿に関する必要事項は別に定める。

附則

1 この規程は、平成24年4月1日から施行する。

2 宮崎大学工学部学術刊行物規程は廃止する。
MEMOIRS OF FACULTY OF ENGINEERING
UNIVERSITY OF MIYAZAKI
No. 46

（宮崎大学工学部紀要 第46号）

平成29年7月25日 印刷
平成29年7月31日 発行

編集兼発行者 宮崎大学工学部
宮崎市学園木花台西1丁目1番地
電話 0985（58）2872

印刷所 株式会社センタークロダ
印刷者 黒田 洋