MENU
宮崎大学データサイエンス・AI
教育プログラム
accreditation system
宮崎大学は、「地域のニーズに応える人材育成・研究」を推進する大学として、ビッグデータを利活用できる数理的思考力を身に付けた地域産業人材の育成を目標とし、宮崎大学データサイエンス・AI 教育プログラム をスタートしました。全学部学生を対象としたリテラシーレベルと応用基礎レベル、工学部学生を対象とした応用基礎レベルの3つの教育プログラムを提供します。
教育プログラム構成
情報処理、人工知能などの知識とそれらを適切に理解し活用する基礎的なリテラシーレベルの能力を身につける教育プログラムです。これからの時代、文理を問わず、あらゆる分野で必要とされる能力です。
本プログラムは、文部科学省「数理・データサイエンス・AI教育プログラム認定制度(MDASH)リテラシーレベルプラス」認定を受けています。(有効期限令和9年3月31日)
本学の認定制度申請内容数理・データサイエンス・AIを実践的に扱える能力を身につける教育プログラムです。本プログラムは、文部科学省「数理・データサイエンス・AI教育プログラム認定制度(MDASH)応用基礎レベル」認定を受けています。(有効期限 令和10年3月31日)
本学の認定制度申請内容工学部は修了要件が異なります。以下のリンク先を参照してください。
データサイエンス・AI 教育プログラム(リテラシー)
令和3年度基礎教育(全学生が受講対象)に「データサイエンス入門」(選択)を新設し、リテラシーレベルの“導入”及び“心得”のカリキュラム内容を中心に実施しました。令和3年度は、全学1年生必修科目であった「情報・数量スキル」による“基礎”の内容と合わせて、2科目にてリテラシーレベルの教育プログラムを構築しました。
令和4年度から「情報・データリテラシー」と「データサイエンス入門」の2科目を提供しています。全学部学生を対象に1年次に開講され、「情報・データリテラシー」の2単位取得者には卒業時に修了証が授与されます。
1教育学部、医学部、工学部、農学部、地域資源創成学部の教員や自治体、地元企業・団体の協力のもとコンテンツ教材を作成しています。これにより幅広い分野でのデータサイエンスの活用事例を学ぶことができます。また、事例にあわせた補完的な解説を入れることによってより理解が深まり学生の興味関心の向上に繋がっています。
2オンデマンドで配信する本学独自の教育システムを活用することによって、宮崎県域大学・高専・高校等への教育プログラムの普及に貢献しています。
3実社会と直結する課題にスポットをあて学内アンケートで得られたデータをデータサイエンスの技術を用いて解析して自分なりの問題とその解決策を考えるコンペティションを開催することで、数理・データサイエンス・AI教育の充実を図っています。
コンピュータの基本事項や情報の概念を理解し、ネットワークの利用、ソフトウェア(ワープロ、表計算ソフト、プレゼンテーションソフト等)の活用、情報セキュティ・情報倫理などについて学びます。さらに、ICT を用いて、多様な情報を収集・分析して適切に判断し、それらを情報倫理に則って効果的に活用できる技能(情報リテラシー)と、数量で示された事象を表やグラフで適切に表現し初歩的な統計判断を行うことができる技能(数量スキル)を修得します。
開講科目の一例
現代において、情報技術の発達やそれに伴う社会構造の変化により、研究者や一部の業種の人々だけでなくあらゆる人がデータを取り扱う状況になっています。
またこれらの状況はさらに発達・発展し、産業活動をはじめあらゆる社会活動でデータの集計、加工、分析、考察やこれらを説明する能力が文系理系問わずに要求されると予測されています。本科目では、大学の研究や企業でどのようにデータサイエンスが用いられているかを確認し、それらを通して今後のデジタル社会で求められるデータサイエンス領域の基礎的な知識や活用について学ぶことを目的としています。
開講科目の一例
「情報・数量スキル」をベースに「データサイエンス入門」を組合せた、全学1年生必修科目「情報・データリテラシー」にて、リテラシーレベルの教育を行うように変更し、応用基礎に繋げる教育プログラムに再構築しています。
データサイエンス・AI教育プログラム(応用基礎)
令和3年度から開始している宮崎大学データサイエンス・AI教育プログラム(リテラシー)(R4認定、リテラシープラスに選定)からの積み上げとして、工学部を除く全学部を対象にした応用基礎レベルの教育プログラムを令和4年度より実施しています。
基礎教育科目に審査項目を充足する「統計学入門」、「データサイエンス入門」、「データサイエンス応用」、「データサイエンス分析実践」等を開設しており、学部・学科に関係なく希望する学生全員が受講可能です。
本教育プログラムは、数理・データサイエンス教育強化拠点コンソーシアムが提示した「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム ~AI×データ活用の実践~」に準拠しています。
「データサイエンス入門」、「データサイエンス応用」の2科目、統計学科目群から1科目、データサイエンス・AI実践科目群から1科目の計4科目の取得を修了要件とする応用基礎レベルの教育プログラムを令和4年度より開始。
令和4年度(プログラム対象学生:令和4年度入学生~)
工学部学生は令和3年度入学生~ ※修了要件は異なります。
a目的に応じて適切なデータ収集・抽出・分析を行う能力やAI技術を活用し課題解決につなげることができる
b数理・データサイエンスの考え方を自然科学から人文・社会科学における様々な問題に応用できる
c数理やコンピュータの知識や技術を用いて様々なデータの情報処理を行い、考察ができる
d各種データの統計的な取り扱いの方法について理解し、統計量の計算をすることができる
e代表的なデータサイエンスの手法を使ってデータの処理ができ、現実の問題に適用できる
本教育プログラムは、数理・データサイエンス・AI教育強化拠点コンソーシアム九州・沖縄ブロックの連携校として、宮崎大学数理データサイエンス部門にて運営しています。
●全教員を対象として年1回以上開催している「数理・データサイエンス部門FD研修会」において報告を行い、授業改善につなげるなど組織的な取り組みを行います。集約した情報は数理・データサイエンス部門会議で共有し、履修状況や問題点などの評価・分析や実施体制の改善につなげるための体制を構築しています。さらに、本プログラムの実施状況や学修成果について、全学教育質保証・向上委員会において自己点検を行うなど、全学教育質保証・向上委員会が統括する体制を整えています。
また、履修・修得の状況に関しては、数理・データサイエンス部門の事務局が、全学の学び・学生支援機構と連携・協力をして管理し、数理・データサイエンス部門会議に確認を行い、最終的には全学大学教育員会にて審議・了承される体制を整えています。
学生の興味・理解を深めるために、IT企業による最新トピックのセミナー・座談会を定期的に開催したり、質問対応・サポート体制を設けて、数理データサイエンス・AI教育の充実を図ります。
教育プログラム 自己点検・評価体制における意見等